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 ABSTRACT 
 
The hydroacoustical bearings only target motion analysis (TMA) problem is that of 
determining target location, heading and velocity from target bearings.  It must be solved 
using noisy data.  Also, the hydroacoustical bearing trackers used for the measurements 
produce poor quality data because of the nature of the ocean medium.  Since bearings 
only TMA is used on submarines for fire control, the performance of the TMA subsystems 
must be accurate, reliable, and computationally efficient.  Historically, this problem has 
been most effectively solved using plotting boards and extended Kalman filters.  Recent 
work has established the performance superiority of batch estimation techniques. 
 
The work presented here is a batch maximum likelihood estimation technique which solves 
the computational problems associated with batch estimation of the past.  In addition, the 
reliability of the approach given here is appropriate for "hands off" application in a real time 
subsystem.  The problem is solved using state of the art computational and statistical 
estimation techniques and a coordinate system differing slightly from those used in the 
past.  The formulation of the technique is a response to the hydroacoustical, computational, 
and mathematical aspects of the TMA problem, within the constraints of performance 
requirements and real time implementation considerations.  Simulation results are 
presented which show the performance of the maximum likelihood TMA estimator to be 
superior to a Kalman TMA estimator. 



 
 
1.0 INTRODUCTION 
 
 
1.1  Historical Summary 
 
Hydroacoustical Target motion analysis (TMA) is implemented using target bearings 
obtained from a passive sonar at low signal to noise.  The function of TMA is to determine 
target range, heading, and velocity, and to produce reliable estimates of the accuracy of 
these parameters.  Originally, TMA was done using bearing and time marks on plotting 
boards.  A slide rule technique approximating the plotting board solution was  introduced 
about 1950.  This technique is known as Ekelund ranging, and is still in wide use today. 
 
Real time application of Kalman filter TMA techniques began about 1970 with the 
introduction of solid state digital computers in submarines.  At about the same time, the 
technology of application of extended (to nonlinear problems) Kalman filtering techniques 
matured to the point that useful TMA could be accomplished.  The earliest Kalman filters 
were four-state target motion parameter estimators using Cartesian coordinates (Ref. 1).  
The most used of these was the Pseudo-Linear Kalman Tracker, introduced and 
developed by Aidala and others (Refs. 2, 3, 4, and 5).  In the late 1970's, IBM first 
proposed a polar coordinates for target motion parameters in an extended Kalman filter to 
replace the Pseudo-Linear algorithm (Refs. 6 and 7).  This algorithm, called the Modified 
Polar (MP) Kalman tracker, overcame most of the problems of the algorithms using 
Cartesian coordinates, but it is not as statistically efficient as some of them.  Statistical 
efficiency is defined classically as the ratio of the best attainable variance of any estimator 
to that of the estimator used (Refs. 8, 9, and 10). 
 
In TMA, as in most applications, the superior performance of batch techniques over 
recursive or Kalman techniques is well accepted.  A recent paper (Ref. 11) has 
demonstrated this in principle for the hydroacoustical bearings-only TMA problem.  
Attempts at batch TMA in the past have been limited to formulations using the sine and 
cosine of the measured bearing in simple least-squares formulations (Ref. 12); these 
algorithms are known to be strongly biased to low range estimates in situations where 
existing algorithms do not fail. 
 
Maximum likelihood estimators are asymptotically efficient, which means that their 
statistical efficiency approaches 100% as the number of measurements used increases 
(Refs. 8, 9, and 10).  However, prior to this work, exact maximum likelihood estimators 
have not been applied successfully to the hydroacoustical bearings only TMA problem in 
real time systems because of mathematical and computational problems.  A recent paper 
gives an approximation of a maximum likelihood estimator which is valid when the total 
bearing swept by the target over the TMA run is small (Ref. 13).  The algorithm presented 
here is an exact maximum likelihood estimator, valid for any TMA geometry. 
 
 



1.2  Technical Summary 
 
The problems to be solved in hydroacoustical bearings-only TMA fall into three categories: 
hydroacoustical, computational, and mathematical.  Hydroacoustical problems are 
problems in the bearing measurements due to wandering raypaths caused by eddies and 
other hydroacoustical phenomena.  In addition, hardware features such as nonGaussian 
bearing measurement errors and variable integration time in the bearing tracker also cause 
problems.  Computational problems are those of dynamic range versus digital word length 
and amount of arithmetic required versus available computer resources.  Mathematical 
problems are singularities or stationary points in the models used in the estimation 
algorithm, such as zero range in the Cartesian coordinate system.  In these cases, a zero 
range estimate will interact with the algorithm in such a manner as to stop the estimates 
from changing further.  This is known as range collapse, and happens sometimes when the 
amount of data is small and range information is not yet present.  Other mathematical 
problems are caused when the target motion model or the measurement model is singular 
in one of the state variables for a value near that of the true solution.  For example, in 
nonlinear batch processes, the state vector estimate is found by an iterative process.  If the 
models for the target motion or the bearing measurement process have singularities near 
the true value of the state vector, this recursive process may be difficult to implement 
reliably.  In addition, singularities near the solution cause increased numbers of iterations to 
be required in the iterative process, which can cause excessive computational 
requirements.  Another class of mathematical problems concerns statistical efficiency.  The 
statistical efficiency of the estimate is known to decrease with the nonlinearity of the 
estimation equation, particularly when the number of measurements is small (Ref. 10).  
Thus, highest statistical efficiency is obtained when the state vector is a near-linear function 
of the measurements, or when a batch estimator is used. 
 
Hydroacoustical problems are solved by allowing a block scale factor to be applied to 
measurement errors as a scale factor.  This allows bearing wander due to hydroacoustical 
effects to be modelled as measurement error.  Correlations between bearing errors are 
neglected by a batch estimator because trends over the entire data base convey much 
greater measurability of the state vector.  Variable integration time of the bearing tracker 
causes corresponding correlation in the bearing measurement errors; these correlations 
are neglected by a batch estimator by the same mechanism as similarly correlated errors 
caused by hydroacoustical effects. 
 
Computational problems are solved by posing each iteration of the batch estimation 
problem as an overdetermined least squares problem and solving it with Householder 
transformations (Refs. 14, 15).  This allows computation in single precision floating point 
arithmetic using a 24 bit mantissa, which reduces computational requirements.  In order to 
minimize propagation of numerical errors, the number and order of the states is adaptive.  
That is, states which do not meet a threshold of observability are dropped out of the 
computation and a nominal value is used in the measurement models, and the states with 
the highest degree of observability are estimated first.  These provisions prevent noisy 
state estimates from causing propagation of errors into observable states. 
 



Mathematical problems are solved by the selection of states.  The states are chosen so 
that the algebraic functions in the system dynamics and measurement models, considered 
as functions of the state variables, have no singular points near the best estimate of the 
state variables.  They are also chosen so that their estimates are not correlated in an 
extreme degree, which prevents numerical problems due to a poorly conditioned (nearly 
singular) covariance matrix.  Statistical efficiency is assured by the use of all available 
bearing measurements in a single maximum likelihood estimator. 



 
 
2.0 ALGORITHM DESCRIPTION 
 
 
The statistical and mathematical notation of a maximum likelihood estimator for 
hydroacoustical bearings only TMA is presented first.  Then, the selection of the state 
vector which helps to solve the mathematical problems is given.  Finally, implementation 
considerations are discussed. 
 
2.1  Maximum Likelihood TMA 
 
At a particular instant in time, the hydroacoustical bearings only TMA problem can be 
stated as follows:  given a data base of target bearings and own-ship positions, to estimate 
the current target range, course, and speed.  Thus, the problem can be stated as a 
classical parameter estimation problem (Refs. 8, 9, 10, 14, 15, and 16).  This is the case 
when a Kalman filter is used with a system dynamics model containing no plant noise, or 
where plant noise is included only to prevent covariance collapse (Refs. 8 and 16).  The 
bearings only TMA problem is stated as a maximum likelihood problem as follows:  given 
the bearing measurements y (in vector format), to find the state vector x which maximized 
the conditional probability density function p(y|x).  The target position, heading and velocity 
are found from the components of the state vector x.  The own-ship positions are 
considered to be part of the model.  This process is simplified by using the log likelihood 
function, 
     ( )( )L p y x= ln       (1) 

 
instead.  This is in part because Gaussian and many other probability density functions are 
simpler in this format.  Since the logarithm function is analytic and monotonic, there is a 
one-to-one correspondence between maxima of p(y'x) and maxima of L.  If the bearings 
are Gaussian (nonGaussian bearings are considered below), then the log likelihood 
function is 
 
  ( )( ) ( )( )L y h x R y h x

T
= − ⋅ − ⋅ ⋅ − +−0 5 1. constant,     (2) 

 
where R is the covariance matrix of the bearing measurements and h(x) is the expected 
bearing as computed from the state vector x.  The time variable is considered to be implied 
by the index of the component of the y and h vectors, and the own ship position (and 
velocity) information is contained in the vector function h(x).  The solution to the likelihood 
equation 

     ∂
∂
L
x
= 0       (3) 

is found by conventional techniques.  Before proceeding, however, it is expedient to make 
some variable changes.  Since R is nearly always diagonal or tridiagonal, its Cholesky 
factor (Ref. 14) can be found and inverted with essentially no computational effort.  Using 
the notation 



     R Y YT− = ⋅1       (4) 
 
for the inverse of the Cholesky factor (Ref. 14) Y, the bearing measurement and estimation 
vectors y and h(x) can be normalized by the bearing variances to form the normalized 
vectors 
 
    ( ) ( )z Y y a x Y h x= ⋅ = ⋅, .     (5) 
 
This allows the log likelihood function to be written as 
 
   ( )( ) ( )( )L z a x z a x

T
= − ⋅ − ⋅ − +05. constant     (6) 

 
and the likelihood equation as 

   ( )( ) ( ) ( )∂
∂

∂
∂

∂
∂

L
x
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a x
x
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x

T= ⋅ − = = = ⋅0, .   (7) 

 
Furthermore, the Fisher information matrix is defined as the negative of the Hessian matrix, 
or second gradient, of the log likelihood function, 

     V L
x

= −
∂
∂

2

2 .      (8) 

 
The inverse of this matrix is,to the first order, the covariance matrix of the error in the 
maximum likelihood estimate of the state vector. 
 
If the likelihood equation, Eq. (7) were linear, the maximum likelihood estimate could be 
found by a simple matrix inversion, and the resulting estimate would be statistically 
efficient; that is, its statistical efficiency would be 100%.  In any case, Fisher and others 
have shown (Ref. 10) that maximum likelihood estimators using a large number of 
measurements have the property that the localization ellipsoid attained by a maximum 
likelihood estimator is contained wholly within the localization ellipsoid attained by any 
estimator.  The localization ellipsoid is defined as the surface defined by setting the 
probability density function of the estimate to a particular value, and is most meaningful 
when the probability density of the estimator is Gaussian.  If the estimate is Gaussian, the 
one-sigma limit is the most often chosen value for defining a localization ellipsoid for the 
purposes of comparing estimators.  The localization ellipsoid has the advantage of taking 
into account the entire covariance matrix of the error in an estimator, not just the variances 
of the estimates of each state.  Furthermore, the maximum likelihood estimator is always 
asymptotically efficient, which means that the statistical efficiency increases monotonically 
with an upper bound of 100% as the number of measurements is increased.  Finally, the 
errors in a maximum likelihood estimator are Gaussian in the limit as the number of 
measurements increases, with, in the limit, a mean of zero and a covariance of the inverse 
of the Fisher information matrix (see Eq. (8)). 
 



Since the likelihood equation is, in general, nonlinear, its solution is usually found 
iteratively.  An error vector e and its derivative are defined by 
 

    e L
x

e
x

V= = −
∂
∂

∂
∂

, ;      (9) 

 
a vector extension of Newton's method, or steepest descent, gives the iteration required to 
drive e to zero and thus solve Eq. (7) as 
 
    ( ) ( )( )( )x x V A z a xT= − + ⋅ ⋅ − −−1 .    (10) 
 
If the higher order derivatives of a(x) are neglected, then V can be approximated by 
 
     V A AT≅ ⋅ .      (11) 
 
This approximation results in an algebraic problem statement identical to that obtained by 
Bayesian methods.  Note that an initial value forx_̂ (-) must be assumed, and that 
convergence of the iterative process and other practical issues have not been addressed 
at this point. 
 
NonGaussian measurement statistics can be considered by extending the definition of the 
probability density function of the bearing measurements to an Edgeworth series.  The 
skewness and kurtosis of the bearing measurements can be added as two extra states and 
the corresponding Edgeworth terms added into the likelihood equation and the definition of 
the Fisher information matrix.  These terms are sufficient to ensure asymptotic efficiency of 
the estimator whenever the Edgeworth series converges (Refs 10, 17 and 18). 
 
 
2.2  The State Vector 
 
 
The state vector is expressed in the log polar coordinate system.  The origin is the phase 
center of the bearing sensor.  The notation of the log polar coordinate system is developed 
from the Cartesian system.  If the relative target positions in the East and North directions 
are denoted by Xc and Yc (the subscripts are used to avoid conflicts in notation), then range 
R, bearing b, and a complex variable w are defined by 
 
    ( )w Y j X R j bc c= + ⋅ = ⋅ − ⋅exp .    (12) 
 
The log polar coordinates of target position, r and b, are defined as the real and imaginary 
components of the natural logarithm of w, 
 

   r j b w
R

R
R

j X
Yc c

+ ⋅ =
⎛
⎝
⎜

⎞
⎠
⎟ =

⎛
⎝
⎜

⎞
⎠
⎟ + ⋅ ⎛

⎝⎜
⎞
⎠⎟

−ln ln tan 1     (13) 



 
where Rc is a free parameter chosen to adjust the scaling of r.  A convenient value of Rc is 
the range used to initialize Eq. (10); the initial value of r is then zero.  The state vector is 
completed by the derivatives of r and b with respect to time, 
 

     ′ + ⋅ ′ =
′r j b w
w

.     (14) 

 
The time variable is taken as zero at current time.  The components of the state vector are 
r0, b0, r'0 and b'0, where the subscript 0 denotes values at current time. 
 
The complex variable w can be expressed as complex target position minus own ship 
position, 
     w w wt os= − .      (15) 
 
This allows combining own ship position and velocity data and a nonaccelerating target 
motion model to be used to find a general state variable extrapolation equation.  This is 
done by combining Eqs. (13) and (15), 
 
    ( )R r j b w wc t os⋅ + ⋅ = −exp      (16) 
 
and expressing the result and its first derivative at current time, to form 
 
    ( )R r j b w wc t os⋅ + ⋅ = −exp 0 0 0 0     (17) 
 
and 
 
   ( ) ( )′ + ⋅ ′ ⋅ ⋅ + ⋅ = ′ − ′r j b R r j b w wc t os0 0 0 0 0exp .    (18) 
 
For a nonaccelerating target, 
 
    w w w t wt t t t= + ′ ⋅ ′ =0 , constant .    (19) 
 
 
By solving Eqs. (17) and (18) for wt0 and w't, the target position wt can be found as a 
function of the state variables at current time.  Substituting the result into Eq. (16) gives the 
general expression 
 
  ( ) ( )( ) ( )R r j b r j b t R r j b dwc c os⋅ + ⋅ = + ′ + ⋅ ′ ⋅ ⋅ ⋅ + ⋅ +exp exp1 0 0 0 0   (20) 
 
where 
 
    dw w w t wos os os os= + ′ ⋅ −0 0      (21) 
 



is the complex distance over which the own ship has accelerated by maneuvering between 
time t and current time.  The natural logarithm of Eq. (20) and its time derivative can be 
used to find the state variables at any time t from the state variables at current time, and 
the extrapolated bearings thus represent the function h(x) in Eqs. (2) and (5).  These 
equations are 

  ( ) ( )r j b r j b r j b t dw
R

j bos+ ⋅ = + ⋅ + + ′ + ⋅ ′ ⋅ + ⋅ − ⋅
⎡

⎣
⎢

⎤

⎦
⎥0 0 0 0

0
01ln exp   (22) 

 
and 
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R
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Each bearing measurement time ti results in another element of the vector h(x).  The 
function a(x) is found by dividing each element of h(x) by the standard deviation of the 
bearing measurement taken at the corresponding time ti. 
 
The partial derivatives which make up the matrix A matrix are found by taking the partial 
derivative of both sides of the imaginary part of Eq. (22) with respect to the state vector.  
This results in the partial derivative of the bearing measurement with respect to the state 
vector.  Since Eq. (22) is the complex variable r + j*b as an analytic function of the complex 
variables r0 + j*b0 and r'0 + j*b'0, the Cauchy-Riemann equations (Ref. 18) can be used to 
simplify the derivation.  The result is 
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   (24) 

 
The log polar coordinate system is very similar to the MP coordinate system referred to 
earlier.  The difference is the use of ln(R/Rc) for the range state variable where the MP 
uses 1/R for that state.  The partial derivatives are the same, except that those 
corresponding to the range state are scaled by a factor of -1/R2.  The difference is in the 
implementation of the steepest descent iteration, Eq. (10).  In any practical case, 
corrections to the range state in the 1/R domain will often cause the updated state variable 
to fall near the singular point of 1/R=0, which in turn will drastically affect the next iteration.  
In addition, any nonlinear iterative process must have ad hoc limits on the state variable 
correction to prevent numerical problems.  These limits are best placed remotely enough 
so that the iterative process described by Eq. (10) follows a locus to the final solution freely. 
 This is not possible for the MP because a singularity is always very near the state variable 



estimate in the 1/R domain.  A similar problem occurs when Cartesian coordinates are 
used, because corrections to the position states often cause a small range estimate to 
occur when range observability is poor.  In Cartesian coordinates, the V-1 matrix becomes 
very small when range is small, so that subsequent iterations will not cause the range 
estimate to increase rapidly to its proper value. 
 
When recursive (Kalman) estimators are used in hydroacoustical bearings only TMA, Eq. 
(10) is replaced by the familiar Kalman state update equation, and the same problems 
occur.  However, there is one very important difference.  When only one measurement is 
processed at a time, the change in bearing is small; the update of the 1/R state is 
proportional, in the first order, to the change in bearing.  Since only one measurement is 
present, the principle of the most nearly linear estimator yielding the highest statistical 
efficiency is operative.  As a result, the MP coordinate system performs slightly better than 
the log polar in recursive estimators.  However, neither the log polar nor the MP Kalman 
filter has the statistical efficiency of Kalman filters using Cartesian coordinates, because the 
state vector updates in these filters are more nearly linear in the measurement residuals 
than the MP.  However, Kalman filters using Cartesian coordinates suffer from poorly 
conditioned covariance matrices due to highly eccentric localization ellipses in addition to 
their range collapse problems.  The overall result is that the MP is the best overall 
compromise between mathematical and numerical problems and statistical efficiency.  In 
batch processing, statistical efficiency is not a strong function of the coordinate system and 
tractability of Eq. (10) is the controlling factor. 
 
Prior to the point where the algorithm is simply tracking, the initial state vector estimate 
used in Eq. (10) is found using four bearings spaced evenly through the existing data base. 
 Complex variables summed around a rectangle defined by the own ship and target at 
current time and at time ti yield the equation 
 
  ( ) ( ) ( )R j b w dt R j b w wt i i i osi os0 0 0 0⋅ ⋅ + ′ ⋅ − ⋅ ⋅ − − =exp exp    (25) 
 
where w't is the target velocity, expressed as a complex variable, and wosi is the own ship 
position at time ti.  This is the plotting board triangulation ranging geometry equation.  
Placing the unknowns on the left side of the equals sign results in the form 
 
  ( ) ( )R j b w dt R j b w wt i i i osi os0 0 0⋅ ⋅ + ′ ⋅ − ⋅ ⋅ = −exp exp .    (26) 
 
 
The unknown Ri can be eliminated by multiplying both sides of Eq. (26) by exp(-j*bi) and 
then taking the imaginary part.  The result is 
 
 ( ) ( ){ } ( ) ( ){ }R b b w j b dt w w j bi t i i osi os i0 0 0⋅ − + ′ ⋅ − ⋅ ⋅ = − ⋅ − ⋅sin Im exp Im exp .  (27) 
 
This is a real linear inhomogeneous equation in three unknowns:  R0 and the real and 
imaginary parts of w't.  The current bearing plus three old bearings adds up to three linear 



inhomogeneous equations in three unknowns.  Given w't, r'0 and b'0 can be found from Eq. 
(18).  The initial state vector is then completely determined from the four bearings. 
 
Equation (27) can be reduced further by considering R0*cos(b0) and R0*sin(b0) as 
unknowns along with the real and imaginary parts of w'i, and the data history presented as 
an array of such equations.  The result is a linear overdetermined least squares problem 
whose solution is the TMA parameters in Cartesian coordinates.  Bearing measurement 
noise can be accounted for by using standard variance propagation techniques to model 
the measurement noise as a white Gaussian vector added to the inhomogeneity, allowing 
weighted least squares to be used.  This technique can be further developed by adding 
data editing, etc.  However, since the bearing measurement noise is coupled nonlinearly 
into the equation in a manner dependent on the state variables, including range, the 
method tends to develop large biases and break down at low signal to noise (Ref. 12).  
However, since the maximum likelihood iteration of Eq. (10) is not sensitive to the initial 
state estimate, this simple four-bearing method suffices for initialization, even for low signal 
to noise ratios. 
 
As a final note, the Ekelund ranging problem can also be solved exactly using Eq. (27) by 
noting that the bearing rate is 
 

   
( ) ( ){ }

′ =
′ − ′ ⋅ − ⋅

b
w w j b

Ri
t osi i

i

Im exp
.     (28) 

 
The Ekelund ranging problem is that of determining range from two observations, one 
before and one after an own ship maneuver, where bearing and bearing rate are 
measured.  Therefore, substituting Eq. (28) into Eq. (27) yields one equation in R0 and Ri.  
Reversing the subscripts 0 and i yields a second linear equation in the ranges at the two 
observation times.  The target velocity can then be found using the ranges thus found in 
Eq. (26), and the range and bearing at any time can be found by extrapolation.  The 
resulting equations are 
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where B is a matrix whose elements are 
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     (30) 

 
where 
 
    dt t t db b b= − = −2 1 2 1,      (31) 
 



and P1 and P2 are crossrange projections of own-ship track between measurements, 
 

  
( ) ( ){ }
( ) ( ){ }

P w w w dt j b

P w w dt w j b
os os os

os os os

1 2 1 1 1

2 2 2 1 2

= − − ′ ⋅ ⋅ − ⋅

= − ′ ⋅ − ⋅ − ⋅

⎫
⎬
⎪

⎭⎪

Im exp

Im exp .
    (32) 

 
The estimated target velocity is 
 

  ( ) ( )
′ =

⋅ ⋅ − ⋅ ⋅ + −
w

R j b R j b w w
dtt

os os2 2 1 1 1 2exp exp
    (33) 

 
and the interpolated range at arbitrary time t is 
 
  ( ) ( )( ) ( ) ( ) ( )R t j b t w w t R j b w t tos os t⋅ ⋅ = − + ⋅ ⋅ + ′ ⋅ −exp exp1 1 1 1 .  (34) 
 
It has been found that, if the signal to noise ratio is high and the mean time of the 
measurements is used as the effective time of the estimated range, the Ekelund range thus 
obtained is quite accurate and reliable.  This "exact" Ekelund range equation is a distinct 
improvement over approximations to the Ekelund ranging equation which are known to be 
unreliable when automated. 
 
 
2.3  Implementation 
 
For all TMA methods, the bearings obtained by the bearing tracker were block averaged 
for 10 to 20 seconds.  This has the benefits of reducing the data rate and yielding a 
measurement error distribution more nearly Gaussian than the raw single bearings.  Also, 
the integration time of the bearing tracker is not a factor when the block averager time 
exceeds the tracker integration time. 
 
Although the estimator presented here is inherently a batch processor, it is implemented as 
if it were a Kalman filter.  The data base, no matter how small (or how large) is submitted to 
the algorithm for estimation of the TMA parameters.  However, once observability of the 
target TMA parameters is obtained, simple target tracking is required.  Under these 
conditions, the state vector from the last estimated target position is extrapolated to current 
time using Eq. (22) and its time derivative.  This condition assures that only one iteration of 
Eq. (10) is required to update the TMA parameters. 
 
For the purposes of output or display, the variances of the TMA parameters in the desired 
coordinate frame are found using the standard linearized covariance propagation equation 
(Ref. 16), as is done when Kalman TMA estimators are used. 
 
There are two important computational techniques used in the implementation:  
Householder transformations are used to solve the least squares problem posed by Eq. 
(10) (Refs. 14 and 15) which allows the algorithm to operate successfully in single precision 



(a 24 bit mantissa), and the order and number of states estimated at any time is adaptive 
as discussed earlier.  The threshold of observability is that the variance of the estimate 
must be less than about 10 times the estimate of that particular state.  If this condition is 
not met, that state is dropped out of the estimation procedure and a nominal value used 
instead.  This only happens when the data is insufficient to form an estimate for TMA 
purposes, but operation of the algorithm is required to monitor observability as the data 
base accumulates. 
 
There are four significant structural features to the implementation:  the choice of the initial 
state vector for Eq. (10) as previously discussed, the use of the approximation of Eq. (11), 
ad hoc techniques used to control the convergence of the iterative procedure, and data 
editing techniques. 
 
The approximation of Eq. (11) is, as stated previously, to neglect the third order derivatives 
of h(x) with respect to the state variables.  This can be corrected by recomputing V using 
the complete expressions after the iterative application of Eq. (10) has converged.  
Omission of the third derivative terms results in errors in the estimate of the covariance 
matrix.  The rate of convergence obtained with Eq. 10 indicates that these errors are small. 
 
There are three ad hoc techniques to control excursion of the state vector during the 
iterative process of Eq. (10):  the length of the state variable correction (with the velocity 
states multiplied by the time since the last update) is limited to 0.7, the range estimate is 
bounded below by 10 meters and above by 1000000 meters to avoid arithmetic overflow, 
and data editing is performed.  It was found that the range limits do not significantly affect 
the rate of convergence, so long as they are at least an order of magnitude away from the 
true value of range.  The state variable correction limit of 0.7 is not critical, but is near an 
optimum for rate of convergence; this value is near ln(2.0), which is reminiscent of the 
"Jarvis fix" (Ref. 1) in which range was not allowed to vary more than a factor of 2 for any 
single update in the early Kalman TMA estimators using Cartesian coordinates.  Data 
editing is performed only after the iteration of Eq. (10) has converged.  At that point, 
bearing error residuals exceeding 2.75 standard deviations are discarded.  Again, this 
value is not critical; the value chosen would result in about one Gaussian bearing per hour 
being discarded.  An important feature of the data editing is that adaptive block scale factor 
estimation of the bearing variance is begun after convergence of Eq. (10) is first obtained, 
which, for real data, allows a much smaller value to be taken for the standard deviation of 
the measurement.  This means that a minimum of three iterations of Eq. (10) are required 
for any update.  It is obvious that this is a very conservative implementation, and that a 
single pass would suffice once a target track was initiated.  The worst case for 
convergence for a data base allowing observability of all states and initializing Eq. (10) 
using Eqs. (27) and (18) with four bearing measurements to determine the initial state 
vector estimate, is 4 iterations of Eq. (10) to obtain convergence, one to estimate a block 
scale factor for bearing errors, and one for final data editing, for a total of 6 iterations.  Very 
early in a TMA run using real data, lack of observability of the range state combined with 
inconsistencies in the data due to loss of bearing lock or other hardware problems can 
occasionally cause the algorithm to hit a software limit of 10 iterations; when this occurs, 



the output is simply ignored until more data is available.  No computational problems are 
caused because this never happens unless the data base is very small. 



 
 
3.0 SIMULATION RESULTS 
 
Although the implementation of the maximum likelihood algorithm present here was 
developed using a great deal of real and synthetic data, the basic properties of the 
algorithm are demonstrated here using a few synthetic data runs.  This is partly for brevity, 
but there is the additional advantage of being able to compare algorithms for the same run 
but with different measurement noise variances.  The target and own ship geometries are 
given in Figure 1.  The own ship follows a zig zag track, typical of TMA runs, but the target 
crosses the bow of the own ship.  Good observability is obtained, but one own ship leg 
adds no bearing rate information and the target bearing rate is uniformly extremely high.  
Figures 2 and 3 show that the range performances of both a log polar extended Kalman 
filter (EKF) and the batch (maximum likelihood) estimators to be excellent--when the 
bearing measurement variance is 0.5 degrees.  Figures 4 and 5 show that for a bearing 
measurement variance of four degrees, the EKF is showing the effect of coupling state 
vector estimate errors into the Kalman gain and covariance estimates, as the EKF shows a 
large random bias in excess of the variance of the estimate.  The batch estimator still 
performs well for a bearing variance of 8.0 degrees, as shown in Figure 6.  The 
computational loading of the maximum likelihood TMA estimator is about 3.5 times the 
loading of the Kalman filter, even though both algorithms are used to estimate the TMA 
parameters for every data point.  The source language is RATFOR, the computer used is a 
Tandy 1000A, and single precision is used for all computations. 
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 Figure 1 
 TMA Geometry 
 
 
 Figure 2 
 Range Error versus Time (EKF) 
 
 
 Figure 3 
 Range Error versus Time (Batch) 
 
 
 Figure 4 
 Range Error versus Time (EKF) 
 
 
 Figure 5 
 Range Error versus Time (Batch) 
 
 
 Figure 6 
 Range Error versus Time (Batch) 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents compatible with  IEEE Xplore.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


