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Our Topics Tonight

What quaternions are and why they are important

Some places that quaternions are used

Quaternion rotation explained and simplified

Why quaternions are simpler than rotation matrices

How quaternions are more accurate in computing
Quaternions in Euler's equations of motion for rotating bodies
Using quaternions in characterizing position and velocity
Examples, with animations

Selected references
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What Are Quaternions?
Why Are They Useful?

“ Quaternions are

2 A way of working with rotating rigid bodies
2 The “sum” of a scalar and a vector

% Why are quaternions important?

< Their use takes the pain out of modeling aircraft, missiles, spinning
bodies, etc.

@ They are easily incorporated into
< Models that include rotating rigid bodies

2 Computer program for analysis or in embedded functions in systems
2 Inertial navigation units and autopilots
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Where Do We Find Quaternions in Use?

“ Your airplanes

2 The autopilot and INU keeps track of latitude, longitude, altitude
“ Quaternions are used in characterizing position
“ Aircraft orientation — roll, pitch and yaw

Your quad drone —in its autopilot
Your cell phone
Your car

In space ,
@ Launch vehicles &

http://antwrp.gsfc.nasa.gov/apod/ap021124.htmlhttp://spaceflight.nasa.gov/ =
9 S pa Cec raft gallery/images/shuttle/sts-82/html/s82e5937.html, Public Domain, /
https://commons.wikimedia.org/w/index.php?curid=118762
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F-35A I\/Ianeuvrs to Refuel from KC-135

By MSgt John Nimmo Sr. —
http://www.defenseimagery.mil/imageRetrieve.action?guid=bcfecb7f82c5cf53d10ff066ef2e4d985ff7ce35&t=2
Public Domain, https://commons.wikimedia.org/w/index.php?curid=26519882
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What Are Quaternions, Exactly?

“ Algebraically
< A scalar associated with a vector in 3-space
2 Or, a particular 4-vector or a special 4 by 4 matrix

% What do they do?

“ Addition and subtraction are just like vectors
<2 Multiplication:

q:q0+Yq:

(B +v))-(8,+V ) =a-a,—(V -V, ) +3, ¥, +8, ¥, +V, xV,

< Division: multiplication by the reciprocal of a quaternion | %

1 1

= (a-v)

a+y  a’+f
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Multiplication is Not Commutative

“ Order of factors in multiplication is significant

/T.\

(&, +Vv,)-(a,+V,)=2a,-a,—(v, -V

el 29 +a1 "V, +a2 VTV, XV,

(az +Y2)'(a1 +Y1) =, -a, — [Y1T 'Y2] ta -V, +a, vV, -V, XV,
“ These products are NOT THE SAME
@ Unless THIS IS IMPORTANT

Vv, xV, =0 We will get back to it later

2 Sets of quaternions that all have the same vector axis
2 Coaxial quaternions form a field that is isometric to complex numbers

2 All complex arithmetic and analytic functions are valid in these fields
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Where Did They Come From?

“ First formulated as such in 1843 by William Rowan Hamilton in

1843
“ |nspiration carved on the side of Brougham Bridge in chalk:

1-]=k, J-1==K
J-k=Lk-j=-1
K-1=], I-k=—]

Basic Concept is Vector Cross-Product
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Why Are They Important?

“ The algebra of rotating body coordinates
2 A method to characterize rotating coordinates of a point on a body

2 Nose and wing positions on an aircraft

2 Leading edge of a Frisbee
9 Direction Up/Down, positions of control fins of spinning missile

< A point on the ground or another aircraft
2 From the standpoint of a ground observer or target
2 From the standpoint of the missile or aircraft

% Known principles are older

< Euler’s Rotation Theorem of 1775: Multiple rotations of a rigid body
are equivalent to a rotation about a single axis

< Coordinate rotation matrices use three rotations: roll, pitch, yaw
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Other Uses of Quaternions

¥ Geometry

< Plane and solid geometry, as an extension to vector algebra (see Hardy
in the References)

2 Computer graphics, for their ability to rotate solid bodies
“ Computer vision, to provide

< Rotation of a solid object

< Movement of the solid object

< Rotation and movement of the viewer point of view

9 Crystallographic texture analysis (see References)
© Pure and applied mathematics
2 Cayley algebras (see References)
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Quaternion Rotations are Used in

“ Autopilots, to keep track of
< The orientation of the platform
< Angle of attack relative to aircraft motion
< The field of view of the aircraft’s sensors
% Computer vision
< To characterize the orientation of an object
< To characterize the orientation of the viewer
“ Tracking and estimation
< To estimate the orientation of an object to model its flight dynamics
2 To estimate what a tracked object “sees”

The Key Capability is Characterizing Rotation
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Some Vector Identities We Will Need

“ Subspace operator, finds projection onto plane normal to v
T
V-V
SUbV — I e
/\f (VT 'V) Matrix operator that extracts
-l component of vector along v
Identity Matrix

@ Skew-symmetric form for use with cross-products

VXW=S, W
0 v, +V,
O(Vxw e
S (—X—)z +v, 0 -v |, szz—(yT-y)-Subv
OW
— =V, +v, 0 |

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017 Slide 12 of 59






Two Ways of Interpreting vx w x v

% The repeated cross product, geometric viewpoint
v (Vx W) = Vx (V][] sin (@) U, ) = V] (V][] sin (@) - Uy

T VVt \_/Xw:|\_/|'|W|'Sin(a)'ngw
=—(v"v) | 1 -5 |-w

2 Triple cross product, algebraic viewpoint
(VxW)xv = (S, -W)xv=-vx(S, w)

=-S5, (S, W) =-S5 -w=(v"-v)Sub,-w
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How Do Quaternions Rotate vectors?

2 A few definitions of quaternion arithmetic
2 Consider a vector as a quaternion with a zero real part
% Define the conjugate of a quaternion as reversing the sign of the vector

part
9 Left-multiply a vector by a quaternion d-V= (a+Q)-y
@ Then right-multiply that result by 1/q _ _(bT -v)+a-v+b><v

- (a® v+ (b v)-b+2-a-(bxy)-bxyxb)

|
q al +(QT -Q)

q-v-
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A Huge Simplification (1 of 2)

“ Use a quaternion defined using a rotation angle ¢ and axis u

J =cos (éj + sin (ﬁj -u
2 )

“ Then gv(1/q) becomes

gyt =2’ V(b v)-b+2-a-(bxv)-bxvxb

q o (oot (£) ()
=cos’ (g] -yﬁsin2 (%)-(Q-QT )-y+ sin(¢)-(uxv)—sin’ (gj -Sub, -v

=(u-u")-v+cos(g)-Sub, -v+sing-(uxv)
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A Huge Simplification (2 of 2)

“ Interpreting this operation:

q-y-%:(g-gT)-y+cos(¢)-8ubu V+sing-(Uxv)
@ The first term (g-gT )-y

2 Extracts the component of v along u
<2 This component of v is left unchanged

@ The second term cos(¢)-Sub, -v
< Finds the projection of v on plane normal to u times cos(¢)
¥ The third term sing-(uxv)

“ Finds the projection of v on plane normal to u times sin(¢)
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Summary of Quaternion Rotation

“ Given the rotation quaternion

= cos (§j+sin (gjg q:expg.gj

Axis of rotation is u

Angle of rotation is ¢

Direction of rotation is by the right-hand-rule
Range of the variable ¢

¢ € ¢ <

-T<@p<r, —£<£££<:>cos i > ()
2 2 2 2
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Geometry of Quaternion Rotation

Circle of Radius
\uxv\ —u-u' :‘ (g u ) y:(gT.y).g

on Plane Normal to u

Axis of Rotation U

v Rotated Sin¢.(gxy)
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Why are Quaternions Simpler?

“ A rotation from the current right-handed Cartesian coordinate
system is with a 3 X 3 matrix

— — T
J (uk-v)
T T
ARot — HY > ARot y = (HY Y) ZYNeW
T
[0 (uZ-v)

2 Needto use A when you have the quaternion?
:

A (00 40) = | [0 )42+ 8 () )

James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017 Slide 21 of 59



The Aerospace Sequence

% The Aerospace Sequence, rotating from ECEF to airframe

coordinates
“ First rotate clockwise-looking-down about the Up axis to aircraft

heading plus yaw,
@ Then rotate clockwise-bow-to-right about the aircraft pitch axis to the

aircraft attitude,
2 Then rotate clockwise-looking-forward to aircraft roll angle.

% Order applied is Yaw, then Pitch, then Roll.
2 To rotate from airframe to ECEF, order is reversed
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Rotating To and From Other Coordinates

¥ To rotate from ECEF to airframe coordinates
YAirframe — q : YECEF ’ q
¥ To rotate from airframe coordinates to ECEF
YECEF =(q '\_/Airframe g
% Simplification: Quaternions don’t require
2 Keeping track of the aerospace sequence

2 Maintenance of roll, pitch and yaw angles
< Special provision for when pitch goes to or through +mr/2
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Quaternion from Euler Angles

() o8 (5 S5
)5 eol5) (3l
(? in| 2] cos{ %] -sin[ £ o

() (v )
( sm( j COS(%)-I-COS Q - COS Z -S1n Z

Iw NIY

-Sin| —

S1n
COS
sin
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Rotation Matrices from Roll, Pitch and Yaw
— 0

Acn =| 0 cos(g) —sin(g)
in(¢

cos(y) 0 sin(y)
APitch — 0 1 0 A= ARoII ' APitch ' A(aw
| —sin(y) 0 cos(y)
cos(y) -sin(y) 0
A =|sin(y) cos(y) 0
0 0o 1
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Need Quaternion from Rotation Matrix? (1 of 2)

% We need these to find the quaternion from A

Sym{A] :%-(A+ AT),Asym{A} :%.(A—AT)

trace{ A} = A, + A, + A,

¥ The rotation quaternion axis asv,, ., is found from

0 -—asv, +asv, asv,
Asym{A}=|+asv, 0  -—asv, [& asv,,, =|asv, |=sin(¢)-Ss,
—asv, +asy, 0 asv; |
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Quaternion from Rotation Matrix (2 of 2)

¥ Sine and cosine of roll and axis vector from asymmetric Matrix

asv,
asv ., =| asv, |=sin(¢)-Ss,, cos(¢)= trace{,gsym} |
asv, |
© Quaternion

sin (¢) :‘asv s U= asV pom
aSVAsym q:1_22+ 7.7 -
Z=tan(£j:1_COS(¢)= sin (¢) 1+2° 1+2° ~

2 sin(¢)  1+cos(¢)
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Euler Angles from Quaternion

4,0, +0, -0, _5 (7/) Provides pitch
| : ey : _
g,-0,—0, 0 = 5 (COS(7/)°SIH(W)) Together with two
_argument arctangent
0y +0, —05 —q; =cos(y)-cos(y) Provides yaw

—

Find roll, given pitch and yaw, from:

cos L) ocosl Y1 —sinl 2 )-sinl Y | cos[ 2

cos(zj cos(zj s1n(2j s1n(2j | cos(zj _{qo} From any two
#)| Lo
2

g elements of g
sin (—j -sin (KJ COS (Zj - COS (Zj sin (
i 2 2 2 2) 11
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Full Ambiguity Range of Roll from Quaternion

COS

Z 8
= 77!
N

N |-
N1 TN y

¢

N NN NS

— —atan 2

o) s (]
(2}l

2

it

1+cos(y)-cos(y)

(5ol

sin (éj
2 ]

) {qo}
o
sin

j COS

i 5o Javeo 5
{3 eol 7o csn{5 {3
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Full Ambiguity Range of Roll from Quaternion

sin(%).cos % —cos(gj-sin(%) cos(gj _{%} From any two

elements of g
sin (%)-cos (%)

J |
| ] 0 -0

SRR

q

@(ﬂjq ZJ(%jq
2 2 2 2 Given Y and

sin (%) - COS (%) -, +cos (%) -S1in (%) -0
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:1—005(7)'005(9”).__COS(Zj.sin(%j in| £ ]-co
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Rotation Matrix and The Euler Angles

“ Rotation matrix in terms of Euler angles
2 Product of roll, pitch, yaw rotation matrices

sin(¢)-sin(y)-cos(y)+cos(¢@)-sin(y) —sin(g)-sin(y)-sin(y)+cos(¢)-cos(y) —sin(g)-cos(y)

{ cos(y)-cos(y) —cos(y)-sin(y) sin(y)
A=
—cos(¢)-sin(y)-cos(y)+sin(g)-sin(y) cos(¢)-sin(y)-sin(y)+sin(g)-cos(y)  cos(4)-cos(y)

2 Euler angles from rotation matrix
w =atan2(A,,A))

7:(305_1(\/ A121 + A122 ) =sin”" (A13) :atan2(A13,V A121 + A122)
¢=atan2(-A,;, A;)
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The Orbital Element Sequence

“ Reference frame is ECIC
< X axis through vernal equinox (in Aries)
< Z axis through North pole
< Y axis is cross-product of Z axis with Y axis to give a right-handed system

“ Translation to orbital elements coordinate system

< First, rotation in longitude, positive East to the line of nodes (the longitude
of the ascending node, or the point above which the satellite passes through

the equatorial plane Northbound)
< Then, inclination of the orbital plane, positive Eastward half plane upward
< Then, true anomaly or angle from that point to the new X axis positive
Northward.
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Common Platform Coordinate Systems

% The Aerospace Sequence
< Called the zyx sequence
“ Rotating base coordinates in order of yaw, pitch, then roll
@ Usually used for airborne objects from ECEF

% The Orbital Element Sequence

2 Called the zxz sequence
< Rotating in longitude to the line of nodes
< Then inclination of the orbital plane
< Rotation to true anomaly

< Usually used for LEO and MEO orbital object positions from ECIC

“ Others (see Minkler and Minkler in References)
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What About Equations of Rotational Motion?

We begin with the moment of inertia matrix
The next step is the angular momentum vector
Outside forces are torque on the body
Generality requires a differential equation

A differentiation provides the rate of change of the angular
momentum

“ The resulting differential equation are

2 The equations of rotational motion

@ Classically called Euler’s equations

¢ © € © ¢
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The Moment of Inertia Matrix

% Moment of inertia matrix
M = [((x"x)-1-x-x") p(x)-dx {

© Origin of coordinate system
@ Center of gravity of the body
< HOLD THAT THOUGHT

“ Result is a real, symmetrical positive definite matrix

“ Singular value decomposition provides

< Eigenvectors are axes of rotation
“ Eigenvalues form a diagonal moment of inertia matrix
James K Beard, Philadelphia IEEE Section Meeting, January 21, 2017

=X, X X EXy =X X

X3 XD =X X =Xt X
3 2
X X =X X, X +X

WE ARE IN BODY COORDINATES
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Angular Momentum

% In any coordinate system r, the analog of mv is
h =M-.-w

—r

“ The time derivative of angular momentum is
d d
—h=M". ( _rj+to
dt dt
“ Torque is the sum of lever arms crossed into force vectors

to = jrxdf js df

“ Lever arm ris vector from axis to point where force is applied
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Time Derivative of the Rotation Quaternion

¥ Finding equation for time derivative of quaternion
q-q=1

dt dt ot dt
“ Conjugating a quaternion to produce the negative of the same

quaternion means that we have a pure vector

“ Derivative of a vector rotated from the body coordinates to the
reference coordinate system

4 L) =2gr, g +qr, g
dt—" dt' dt = = dt
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Getting to a Cross-Product

“ Rotating the velocity in the reference coordinate system back to
the body coordinates

= dt ' dt ~ > 0 dt
% Fundamental identity from multiplication of quaternions

1
E'(Y1 vV, =V, 'Y1)ZY1XY2

¥ So that

. d .
\_/r:2°(q 'quXLb:QbXKbﬂ szz‘(q EQJ
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Euler’s Equations

“ Rotating the angular momentum to the reference frame
q-h,-q=q-M-a,q
“ Taking the derivative with respect to time

J . d . d *
—q-[M-@,]-q" +q -[M -Qb]-aq +q-{l\/l -—wb]q

dt dt —
“ Rotating back and solving for the time derivative of the rotation
vector d . d .
M 'EQb =10, ¢ ‘Eq‘[M ‘Qb]_[M ’Qb]'aq g

=10, =S,,-M -,
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Equation for Numerical Solutions

“ Euler’s Equation for Motion of a Rotating Rigid Body

in =M™ '(t_ob -3, M 'Qb)
dt
(e
% Time differential equation for the rotation matrix
iA: A-S .
dt
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Why are Quaternions More Accurate

“ Sensitivity of rotation matrix are similar
2 WRT Roll, Pitch, Yaw
2 WRT q, vqg
“ Euler’s equations & sensitivities
“ Build into your equations an exponential trend toward normalization

“ For quaternions, this is _qstab(q)_ Adjust for
. application
gstab(q) = gstabconst - (|g|-1), wa= ' |, gstabconst=1.0
a)Z
| ey
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Reasons for Including the Stability Term

¥ Robustness of simulation for unlimited run times
2 Eliminates a software maintenance area

% Write-and-forget enabler
< For critical systems functional blocks
<% For embedded software
< Trouble-free components of larger models

% Quality attribute for delivered software
2 You won’t hear from “quaternion magnitude decay”

2 Confidence by others in using your models
2 Robustness when others use it for non-predicted applications
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Sources of Error with Quaternions

% Numerical errors in Euler’s equations

%Qb M~ (@b -3
d 1 . Add a stability term to the

— 0 = — ) )
=59 % angular velocity term

'M'Qb)

wb

dt P
“ Numerical errors in rotation

| 1 (a -V, + (b Vb) Q+2-a-(Qxyb)—Qx\_/be)

=Q'¥b'a= a2+(QT -b)

2 All these equations are well-conditioned numerically
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Sources of Errors with Direction Cosines

% Numerical Error in Euler’s Equations
d

EQb =M™ '(t_ob -3, M 'Qb)

d Keeping A unitary is complicated

—A=A-S

dt Differential equations in Euler
% Numerical Error in Rotations angles are complicated

V= A'Yb

“ Everything is noisier when |Y| is near /2
© “Gimbal lock” singularity at | Y| =m/2
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Problems in Common with Both Approaches

¥ |nterfaces

< Different system blocks have a documented communication interface

2 The quantities in the interface are specified by the Interface Control
Document (ICD), a systems engineering artifact
2 All quantities passed between system blocks are defined

< Word length, normalization, physical units, data rate, static reference values
such as the gravitational constant are in the ICD but not necessarily on the bus

< This may include Euler angles or quaternion, or both
< Aerospace sequence, orbital element sequence, etc. must be defined in ICD

“ Coordinates must be exchanged and updated

< Different system functions use different coordinate systems
2 Underlying coordinates for most systems must be inertial
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Lets Look at Position: Coordinates for a Radar

“ Base system coordinate system is ECIC

© Local coordinate system is radar coordinates
© Origin is at the antenna phase center
2 X is horizontal, to left looking out from radar
“ Y is vertical, parallel to antenna face
@ Zis normal to plane of antenna, out radar axis
“ Very natural for planar radar antenna arrays
2 Not an inertial coordinate system

¥ yis line-of-sight from radar to target
“ Position is what is characterized by the quaternion

F-35 AESA photo By Daderot - Own work, CCO,
https://commons.wikimedia.org/w/index.php?curid=34902920
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The Variables

© Position
qTarget RTarget T
qTC — hl - hl i !Target
R, R, )
i J ) We are using quaternions
Ll that share u as a field
Urarger = Uup analogous to complex
\/1_uieﬁ —u numbers

¥ Radar measures R, .., U, Uy Rrage
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The State Vector x and the Measurements y

or 1

B ( R j_ aln(r)(algr(r)JirRio
In R_ - R — ) i
0 — R
— 0 0 0 0 O
uLeft RO RO
u oy
«—| Yo y=| | H=—=/0 10000
= = X
R Hup = | 0 oG
R £ 0 001 00
L]Left — R -
U H is the Sensitivity Matrix
L Up |
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State Transition Matrix

¥ General form

1 00 7z 00
0100770
q)(z_t)zﬁg(t—l—z')zOOlOOT
’ ox(t) |0 0 0 1 0 O
000010
0000 0 1

“ Actual exact form depends on target motion model
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Consequences of Selection of States

“ Statistical efficiency

@ Linear relationship between measurements and position states

because measurements and position states, range rate state are the
same as the measurements

¥ Numerical efficiency

2 Kalman filter base equations all have matrices with unitless elements of
same general magnitude ¢_ .

X
2 Advantages accrue to P=®.-P.®" +Q, P'=P'+HT.R'.H
< Joseph Stabilized Form . ,

T
< UDUT Square Root Filter K=P-H -R
9 SRIF X=X+K'(y—h(X))
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Kalman Filter Types

2 Joseph stabilized form (Gelb, pp 305-306)
P=0-P 0" +Q, K=P-H"-(H-P-H"+R)
P=(1-K-H)-P-(1-K-H) +K-R-K"

% UDUT Factorization
2 Uses “square root” of covariance matrix
U-D-U" =P, U upper triangular w/1s on diagonal, D diagonal
2 Nearly a drop-in upgrade for Joseph stabilized form
© Square root information filter (SRIF)
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Square Root Information Filter

% Works with a Cholesky factorization of inverse of covariance matrix

¥ Most number crunching is done using Householder reflections
< Left-multiplication by Householder reflections, matrices of the form
T=1-2.u-u'
< Well known for excellent numerical properties
© Accuracy and numerical advantages when

2 Best model at start is initialization with “infinite variance” of unobservable
states

2 One or more states is poorly observed for several update periods at the
beginning of track

< Anytime one or more states are carried along without observability
< Huge numbers of data points are used in updates (rare in radar trackers)
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The Subtleties of Tracking Suborbital Objects

“ Target position updates

< Atmospheric object target motion model and updates in ECEF

2 Exoatmospheric object target motion model and updates updates in
ECIC

“ Some use custom updates
< Fast-rising missiles exhibit Coriolis from ECEF rotation
< High exoatmospheric objects need custom dynamic modeling
“ ECEF rotates with time and must be periodically updated

2 Long wait times without updates in ECEF result in gravity “down”
rotating 15 degrees an hour

2 This resulted in Patriot missiles missing a Scud in first Irag war
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Examples

% Mathcad simulation of ICBM payload re-entry cone
2 Mathcad Program (start)
“ Empty cone (start)
2 Empty with radar fuze window (start)
2 With warhead mass and radar fuze window (start)
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