
I. INTRODUCTION 

When radar, sonar, or communications systems 

Costas Array Generation and have requirements for unambiguous time and 
frequency offset, often the simplest waveforms tbat 

Sei :h Methodology will meet these requirements are frequency-jump 
burst (FJB) types and their derivatives. This arises 
with sonar that must detect high-speed targets, 
high-resolution radar for objects at orbital speeds, 
many communication systems, and other applicatiam. 
Comprehensive selection of Costas arrays is impow 
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are offset by an integral number of time slots and 
frequency channels, and no more than one of the 
subwaveforms overlap, this waveform meets the 

Costas arrays are permutation raetrtces that provide Costas condition. The ideal ambiguity function for 
sequencing schemes for frequency hop ia E K  wavehnns. So& an FJB waveform can be achieved when the C o s a  
frequency-shift keying (FSK) waveforms mn be designed ko have condition is met. This ideal is a single, central peak 
nearly ideal ambiguity function properties in both the time and and uniform sidelobes in bath time and frequency 
frequency directions: the Costas property permits at most one with a uniform maximum height that is inversely 
coincident tone in autocorrelations in both time and frequency. pro~ortional to the number of subwaveforms N- 

Costas arrays are found by number-theoretic generators and their An ~ ( ~ 3  4) is a O~ the 

extensions, and by exhaustive search melkds. Two new extensions u(t)9 and is by [I1 

of number-theoretic methods are introduced here thae find two 
x(r, 4) = /.(I) u*(f) . exp(- j .2n. 4 .  l ) .  dr 

new Costas arrays. All Costas arrays for orders 24,25, and 26 are 
disclosed here, including previously unknown examples. 

= J u * ( ~ ) . u ( ~  +4).exp(-j.211. . r )-df  

where UCf) is the Fourier transform of the signal. 
The range-Doppler response of a coherent receiver 
to a waveform approximates the ambiguity fux t io~  
When the medium prevents coherent processing 
across the full FJB frequency range as in most sonar 
applications, each frequency channel can be processed 
separately and the frequency channels combined 
incoherently. The resulting delay-Doppler response 
has a range resolution determined by the bandwidth of 
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The range-Doppler response of a coherent receiver 

When the medium prevents coherent processing 

separately and the frequency channels combined 
incoherently. The resulting delay-Doppler response 

in [2] .  

(11 definitive andysis of this type of processing is given 

to a waveform approximates the ambiguity function. 
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1 )  Radar; Sonal; Communications and Other 
Applications: With emerging technologies for 
whaustive search as presented here, sufficient 
palettes of moderate order Costas arrays are 
available to support features such as waveform 
aghty. Number-theoretic generators and extensions 
provide less comprehensive selections but large 
numbers of Costas arrays of arbitrarily large order, 
Wavefarms incorporating Costas arrays as part of 
beii design are particularly useful in applications 

1 
where the target Dbppler is a significant portion 

, dthe radar bandwidth, such as radars designed 
io track extra-atmospheric objects, particularly in 
highly eccentric crrbits such as those with Molnyia 
wbib or ballistic objects such as launch vehicles. 

Fig. 1. Ambiguity function +ox F$K waveform based on wder 26 
Costas array. 

of order 24,25, and 26, and the methodology and 
implementation of our search method. 

We also introduce two new generators of Costas 
arrays that use a singularity in a modified Lempel 
or Gdomb number-theoretic generator to add a dot 
and a modification of this generator. These generators 

ys with resd& similar to those of binary may or may not produce a COSGLS array but have 
keying (BPSK) radar and cowmications produced two new Costas arrays for orders too large 

for exhaustive search at the present time, and they 
s arrays as a component of found several others h t  are known only through 
can lead to very high performance selective sa rch  methods. 

1 )  Notation and Definitions: Here we lay 

e is clearer in the zero Doppler slice shown methodology, existing and new generators, and rate 
of occurrence of Costas arrays as a function of order. 

Column-index notation expresses a permutation 
matrix as an ordered set of N integers, one for each 
row of the matrix, each representing the index of the 

index notation of a permutation matrix. Each element 
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Fig. 2. Zero-Doppler slice of ambigrrity function. 



d , ,  in row s and column i is 

ds,,=cs+,-c,, s € [ l , N - 1 1 ,  i ~ [ l , N - s ] .  

(2) 
The M e r e w e  matrix is hiang~~lar, having N - 1 rows, 
and row s has N - s elcmknts- Tbe entry d,, represents 
the offset ia columns b- ones in rows s and 
s + i .  

A Costas array is a permmation m&jr such that, 
when s h W  ug s rows and left k cdumns, end-off, 
and 0 a . M  b m f t e d  matrix, her& po 

mom the shifted m a ~ Z ~ i n c i d e n t  
with a one d matrix&$dtss s and k are 
both zero, in which oasogll,&pd are coincident. 
Thls is obviously equivalent to the FSK waveform 
ambiguity fmldcm mpirernent that we call the Costas 
condition. 

The difference matrix is used to determine if a 
permutation matrix has the Costas property. Note 
that row i of the unshifted matrix is overlaid by row 
i + s of the matrix shifted up by s rows. Each 1 in 
the unshifted matrix is at column c,, and a one In 
the overlaying matrix that has been shifted left by 
k columns is in column e,,, - k. Thus k is equal to 
the difference matrix entry d.  ,.  given in (2). So, 

in row s 

is equivaLent to the Costas cmdi60n i 

2) Costas Arrays Come in Sets of Four or Eight: 
An important property of Costas arrays is that they 
come In sets of f w ' a r  eight This is zrpparcnt w k n  
one considers that a set of fouf or' eight Costas armp 
can be coatnrctad from a single Costas a!iray. 

I ) .  Reversing the order of the rows of a Costas 
array prnduces another CasCas array. 

2) Reversing the order of the cohmns af a Cosps.., 
array produces. ano* C a p s  m y .  

3) Revming fie ordas af both the rows a d  
c o l u m  of a Castas c a y  produces anofhex Castas 
array. 

4) Transposing a Costas array provides a basis for 
another four Costas arrays. 

We call any Costas m a y  that is in the same group 
' 3)  ~eveisfflg me'oraer dr [fie rows"or f iosras  

array produces another Costas array. 
2) Reversing the order of the columns of a Costas 

array produces another Costas array. 
3) Reversing the orders of both the rows and 

columns of a Costas array produces another Costas 
array. 

4) Transposing a Costas array provides a basis for 
another four Costas arrays. 

We call any Costas m a y  that is in the same group 
of four or aigbt a plymeu-ph of any other Costas 
array in that group. Any Coatas array in e group of * 

only fom i s  called a spmztriatl C m  army; two of 
the set will be srmunerdcd abmt the ldain diagonal 

TABLE I 
Cosm Amy .and DLffwnce Ma&& .~xz&k 

eight. Note th,at.sotat&g a Costas ycny is @vdt 
to t n n s p s & ~  ix aqd tben reversing h order af e 
the rows ~ r . c . q l w ,  so rob- 8 Costas a m y  n 
also praduce 8 C O W  array in the same set of for ,, 
eight. 

3) Example: An &ample of a Costas array of,: 
order 6 is (5,4,6,2,$, 12 This Costas array md its . 
differaace ttutrix me shown In Trtble L 

The matfig expressed using column-inch notad 
as the seqyetlce of positive,integara from one b 
N is the identity mbrix, as (1,2,3,.. . N). We use 
s i m u l ~ e  &fipitiaaf of a Costa may apd, the, 
difference matrix in fast mathod$ far exhaustive 
searctyes; the we ,variations of h-k ., 
programming with preclusion [IO]. 

I I. EXIS7jNG NUMBER-THEORETIC GENERATORS 

The Wed& and Lempel-Gohnb generators am 
given in LlI] and were prwented with proofs in {12 
Extensioas are @van with ithexistance proofs in [13] 
[14]. They are summrr?zed here to establish rlorati 
and to pmv$de & basis kr o l d  form expresdom 
the difference t.ablq entries far these generatars 

All the awjber-thearetic gemrstors are b e d  on , 
Galois mte fidds [1 I]. Gabis fields ex& fw orders, 
q  that,^ powers of a prim pk; when k > 1 the kkLr 
is a vector atenslon 119-171. 

The usefulnps ,of W v i a  fields here lies in 
primitive qkwabs, somefirms cdkd primitive roots. 
The. successive gqwers of-b primitive, element 
represea a .pesanuta$ion of @e cleaten& exclusive 
of zero; fbr: this reason primitive dements are ale? 
sometimes W e d  generators. For the Galois fi&l of 
order q, GF(q), . ~ e  number of primitive elements is 
given by the Euler phi or totient function +(q - 1). 

A. Wdch Cene~ator 
The usefulness of Gdvia fields het-e lies in 

primitive elements, samefirms ~dkd primitive roots. . , 
I 

The successive powers of-b primitive, element 1 
represent a permutation of @e cleaten& exclusive 
of zero; for this reason primitive dements are ale? 
sometimes called generators. For the Galois fi&l of 

given by the Euler phi or totient function +(q - 1). 
order q, GF(q), the number of primitive elementsis . 

A. Wdch Cene~ator 

In tSae mid 197Qs, Joh P; Costae wrote a btter to 
Solomoa W. G o l o r n b ~ c o n ~  C a w  arrays, and 
Llovd Welch ~ointed out t h a ~  when a is urime. Costas 1 



finite field, q must be a prime and the field cannot 
a vector extension (i.e., the Welch generator applies 
Costas m a y  orders one less than a prime). 
An expression for elements in the difference 

is found using (9, 

d . = c .  - c .  S,I l + S  1 

- al+"mod q 

(a" 1)mod q. 

Lempel-Golomb Generator 

Costas arrays of order q - 2 are generated using 
(not necessarily distinct) primitive roots ct and ,B 

- 1 in GF(q). ai+' +PC,+' - (5) ' 

are distinct, the resulting Costas arrays 
trical and have polymorphs in groups 

the two equations to obtain ,O to the power 
try in the difference table, 

(7) 

es of Generators 

use of powers of elements of Galois fields 
h and Lempel-Golomb generators means 
ices in the exponents are effective modulo 
Is true of the row indices of the Welch 

by (3) and both the row and 
s of the Lempel-Golomb generator as 

n (3), the Welch generator, produces 
iwe doubly periodic; the row indices have 

e column indices have period q. 
fails when the left hand side is zero, but 
s a Costas array that is singly periodic. 

ifically written with the column 
t variable, and an arbitrary row 
ress this transparently. All known 

arrays are produced by a Welch 
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TABLE 11 
Number-Theoretic Generators md Extensions Ffom [ l  11 

- . -  

Generator Realarks 

Wdch I ci + 1 = al+'mod q = p, base method 
Welch 2 (1,l)  removed 
Welch 3 (1,l) and (2,2) removed 
Lempel-Golomb 2 cri+' +PC;+' = 1 ,  base method 
Lernpel-Golomb 3 L-G 2, (1,l) removed (see [13]) 
Leqd-Oolomb 4 (1, I), (2,2) removed; q = 2k 
Golomb* 4 (],I),  (2.9-2) removed; a+P = I 
Golomb* 5 Golomb* 4, (q - 2,2) removed 
Taylor 4 Lempel 2, (1,2) and (2.1) removed 
WeIch 0 Add a corner dot to Welch 1 
Taylor 1 Lempel-Golomb 2, add a corner dot 
Taylor 0 Lempel-Golomb 2, add two corner dots 

The Lempel-Golomb generator produces arrays 
that are doubly periodic, with both row and column 
indices having period q - 1. The Lempel-Golomb 
generator (5) fails when either the row or column 
index is equal to q - 2mod q - 1. Although (5) 
produces a doubly periodic structure, the forbidden 
rows and columns partition off i'dmtical Costas arrays 
of order q - 2. 

Most importantly, note that our closed forms for 
values in the difference matrix given by (4) and (7) 
show that the elements of the rows of the difference 
equations for Costas arrays that are found by the 
generators are unique modub q - 1-which is a 
stronger condition than the Costas condition. Thus 
generated Costa arrays are onrconstrained and 
provide a basis for finding other Catas arrays by 
providing a starting point for focused searches (i:e., 
nondeterministic try-and-check generators, as are 
some of the Taylor extensions). 

D. Generators and Extensions in [I 7 I 

Reference [l 11 defines methods and extensions 
from Galois fields in terms of the difference between 
the order of the Galois field and the order of the 
Costas array. For example, the Welch generator is 
referred to as Welch 1. The integer following the 
name is the difference between the order of the Costas 
arrays generated and the order of the finite field q; for 
example, the Taylor 4 method results in Costas arrays 
of order q - 4. They are summarized in Table 11. The 
order of the Galois field is referred to as a prime p 
or a power of a prime q, and the order of the Cosw 
arrays is N .  

Proofs of the methods gven in the table are 
provided in [121, 1131, a d  [141. 

The advantages of the number-theoretic generators 
include: 

1) Simplicity and speed-the generators are 
simple and fast, given arithmetic in GF(q).  

2) Numbers of Costas arrays generated-the 
Welch generator guarantees N = q - 1 Costas arrays 
for each primitive element that exists. 



Primitive B1mnt  Jndex Polyn~&.?  

3) & & ~ o f ~ ~ s l ~ o F h g t ? b & ~ e  
gmer&r~ zt@ iinple&&n@ %itti p o d  cdthp'utafjond' 
speedq for largkr ord&." ' '. .- * I :: . + I  i l '  - 

4s -~cx tens ioo~~ '$ i+%~eo+ of 'orddr' 
other &tso'& less &ah a p*6 or &vo ok;three l q s  ' 
thah A ~ o w e r d f a ~ e e I , "  " 
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The disadvmttiges of the number-thebtb 
I' genetatms in&*, / 1 ,  

. . . , , . l  - 1 . 1  . 1 ' 1  

1) Not a~4&3&8 m ahrs of tho) 
C o s t a ~ . ~ ~ y s , g m ~  ate. ~ y : ~ ~ h y  v w  
of q for wMbl GF(Q) e#i*;.and up tO fim 
than q4wdwm>gQrne'eMmi& ~dw?t w & . d y  
ordm 'gI .- B;;p+b~anh.p- l- am gwuanteedb s u b  
p is my p#imeadq~is d p r i m d m t ' ~ e r , d  a # h a .  
[ r s , j ~ , ~  . I T  I -  I t . '  I 

21 Mathy oi;& M e w  mtrinrtiona afpriqlith 
elemcnts in GF(q) p r h n d q B C a f C b  aipolymatpHs 
of Costas arrays hunb by other combinations-& 
number of Costas arrays gwdwed the gwwa-@xs 
is thus for less than that which might be expected 
from the nmibef & Btfmttrvc mots availabIe fop the 

1 ' * I " generat&. $ .  ' 
, , I  : . ., .*. I 1  , J '  , 2 

Nor0 hark~*& i~  for* GF(*). : .. 
there always uxim a pair. of >p@t3w mots at zind ,/3 
such **a + p = I. Thw fw @ t f x y ~ O ~ q ? , S ~ 1  
ztmq ia jipemtedhthas~a 1 at@,@, WAZ.can-be. 
removed m form atlothet Gostas array of Mder q - 3, 
Wefum. whknwe a b ~ l - W l &  2.gmeor 
exi*~ B bmlpd4dmti 3 gemmor dl~d &st& s.33. 
Nab in W'W oflpri&iitiF;e.dem&ts for t3pI27Yj , ' 
given ie Table' eOlc, that this holds for the pairsairs $3;4f;' 
f K  01 *"'4+m$m4: " < : - , I I J<l>fl. , .? 

from the number of primitive roots available for the 
1 I ' 1 1 1 .  generatots. '. 
, , I  : . ., -.. I 1  P . , I  I 2  

Nor0 ha M- * m i -  for* G.F(q): : \ . 
there always uxim a pair. of zpf&it3w mots at zind ,/3 
such + p =f 1. Thw-fQr & v q l # - & ~ w ~  
ztmq ia memtsd &at hma 1 at@,.O), WAt,can ber. 
removed ra form atlothet Gostas m y  of Mder q - 3, 
Wefum, whenwtxpa I j e ~ l - ~ l ~  2 ,genem 
exigsi B ti&q%l-Gidbmti 3 gemFEttor dl& &s& s.31. 
Nab .in W'W oflpri&iiti+e~dem&& for OF(gYj ' 

given ie Table that this holds for the pairs- f3,4f;' 
{6,9), ad'@?r'@J.: ' . L .  4 ,:, - - P I  I , J t ~ f l  ;? 

< .  . >  & X  

TZMO NEW efMfWTOR5 OF 
1 . , > 4 

First~b4ei.v Gn&or Extensisn~ 
, > >  , 

An obvious variation on the &empcl-Golamb 
generator is 

a'+l +PC1+l  = Y  1 
where y is an element in GF(q). Note hat makingd 
inhomogeneity different from 1 m m s  &c forbidded 
row and column. The last line in (7) becomes 

We can make the substitution, without 
gmeraiit$' ' . ,  

7 = 'Pd. 

Equalloo (9) is pow 

The m l a ( l 4 )  un be1- to povide ; 
14 

didnct w m  valclps for d,; &win Q&# 
q - ~ w j ~ k m & w  dga,o,athdi q - ~ , ~ o f i  
wh.4&&euni$cwthvaIOeofr.ThadiffiwIt]r H 
lies when 

8 l , d l . '  , 1 1 .  $+I = +.dU - *  1. (4 - 1 
andu'($) &Is, because the k o n d  term gsa the rj..?''" 
hand side of (1 1) does not &is€. wi'call this a 
singular c s e .  

We intmdhrre Vie ~ r r c e p t  of making'he row and, 
column offsets of 1 in (8) arbitrary a allowing 
ah tqhoiwht of z m ,  and & h e  Qt c&&spond@!fd 
cohmn index as tbe '&dLihitt'rs mot fepmsed@ 
in the set found for i from 0 to q - 2 h b i v e .  TbL' 
adds a dot k the intersection 06 rhe forbidden row 
c d u h .  Fur the LrnpeI-Goimb gmerator, where 
is 1, this extansion is one form of a Taylor extension 
adding a comer bot to a Castas m y  found with the 
Lempel-Womb generator [I I]. We &fine a more 
general extension as fallawa We hava 

i- 8 { =@k,-~?ff? i =,go - i,oEfwodq - 1 
ci 

= (&wa w~tiw), i # ra.- ioffmadq - L 
adding a comer dot to a Costas array round wi h h e  
Lempel-Golomb generator [I I]. We define a more 
general extension as follows. We have 

and, dividing through by y, 

p + c o f f  -zh + ai+ioff -gr~ - - 1 

Here, we define the singular cases as 



w&h, when examined for uniqueness in a row of the t 
matrix is, in general, inconclusive. Here 

have a general extension to the Lempel-Clolomb 
t b ~ d  that always produces a permutation matrix 

- E but not always a Costas array. Thus, 
rmutation matrices generated using this extension 
ust be tested for the Costas condition. 

r , Second New Generator Extension 

Another new generator extension is found through 
p modif~:&on of (13), 

1 Dividing through by 7, as  we did before, gives us 

.. . 
"The singular cases are defined as ' 

= gbn-cofT, i = gn-ioffmodq- 1 

= (from equation), i # ga - io,ffmodq - 1. 

(19) 
equations are identical to (13)-(15) through 

kept for the minus sign in (17) and use of gbn in 
@x of gb. These variables map through 

The analogy carries to the explicit form for the 
ts of the difference matrix. Equation f 16) also 

i t s  for this generator extension with gbn in place t 
again, when examined for uniqueness in a row 
difference matrix. is inconclusive. The C W  

m this extension will have their columns 
fiom the first extension, and the value of 
owed for ga, which was taken as the m d  

nerator for the previous fonn. 
matrices generated using this 
sted for the Costas condition. 

end-around in a permutation matrix by adding the 
number of columns to each index, modulo the order 
of the permutation. Rows are shifted end-around by 
shifting the elements of the representation end-around. 

1) Order 4: We begin with a simpk exarnpk 
of order 4. We show how Costas arrays of order 3, 
generated by Lempel and Golomb generatars over 
GF(5), produce Costas arrays of order 4 through the 
extension introduced here. 

The primitive roots in GF(5) are 2 and 3. The 
Costas array (1,0,2) is generated using the Lempel 
generator for cx 5 2. Using (14) we see that the 
permutation matrix (0,2,1,3), with its rows and 
mhms shifted together, keeping element (0,O) on 
the main diagonal, produces the candidates for Costas 
arrays. 

The Costas mays (0,1,3,2) and (1,0,2,3) are 
produced by shifts of one and three, respectively. The 
shifts of zero and two did not produce valid Costas 
arrays. 

The Lempel generator for cr r 3 prodaces (0,2,1). 
Again using (14), we see that the permutation matrix 
(0,1,3,2), with rows and cdumns shifted to move 
the element (0,O) down the main diagonal as before, 
provides four candidates for the Costas property. The 
result is the Costas arrays (0, I, 3,2) and (1,0,2,3) 
for shifts of zero and two, while the pernwtatioris 
prodaced by shifts of one and three are not Costas 
arrays. 

The Golomb generator for a = 2 and 0 = 3 
produces the Costas array (1,2,0). The singularity 
for powers of a d zero, one, two, and three is at 
positions (0,0), (1,3), (2,2), and (3.1). ALI of them 
produce valid Costas arrays with the raws and 
columns of (0,2,3, I )  shifted to move the element 
at (0.0) to these positions, producing CO~QS mays 
(0,2,3,1), (0,3,1,2), (1,3,2,0), and (3,0,2,1), 
respectively. 

2)  Order 10: For order 10, the Golomb generator 
over GF(1 I )  for crr = 2 and P = 7 produces the order 9 
Costas array (4,8,5,0,23,1,7,6). Valid Costas arrays 
are produced for shifts of (0,O) and (1.7). They are 
(1,5,9,6,1,3,4,2,8,7> md (4,7,2,43,8,0,  L9.51, 
respectively. The permutations produced by rhe other 
shifts are not Costas mays. 

D. New Costas Arrays of Order 26 and Generators 
~xamples of New Extensions 

The authors have implemented all the generators 
give examples here for several orders, in Table U and the new generatars reported here and 

ing with order 4 and progressing to larger in [L9]. In addition, generalizations not found in the 
Specific emphasis is on providing simple literature are incorporated in the authors' methods, 

les to provide insight, nontrivial examples using including rotating Costas arrays end-around in both 
a1 singular case positions, and larger orders rows and cdumns and adding or dropping one or 
new results. Order 26 is deferred to an more comer dots; we refer to this generalization of 
eatment of all cases in subsection D below. the Taylor extensions as the spin generalizations The 

We wwk here with the column-index formulations. dots in Fig. 5 show the total count of unique Costas 
the cohmn-index formulatian, columns are shifted arrays from this methodology, with our upd* of tbe 

D FT AL.: COSTAS ARRAY GJ3NERATION AND SEARCH METHODOLOGY 



es t ime  from [20] as a solid curve (see discussion of 
[20] in Section IVA). Rwults for order 26 ate given in 
Table XI  aad Nbk XCI. The table entries are denoted 
in &scumions to follow as CA25.0-CA25.11 and 
CA26.WA267, respectively, denoting the rows in 
the tables in orda. 

The entry CA26.0 is found by adding a comer dot 
to a Cows m a y  lhat is a polymarph of CA25.0, and 
CA26.3 can be found by adding a corner tn a version 
of CA25.0 that has been end-around rotated along the 
main diagonal. This Casts m y  is found from the 
generators. CA26.1, CA26.2, CA26.4, and CA16.5 
are obtained from deleting a caner dot h m  one of 
196 unique Costas mays of or& 27 praduced by the 
generators. 

The notation for polynomials below is of the form 
(d),cl,c&,c3} dmdng the cmfficimts of xa, syl, x2, 
and x3,  reapactiwly. Y. caepficiant c3 ~ppaars only in 
the gcnerampolynornial. The primitive elements are 
numbered in a table and primitive element pairs, each 
element d e M  by an indw, r t ~  denoted by f el,  e2). 

T k  Welch 3 generator produces CA26.1 and the 
rest of itx set of eight from GF(29)  with primhive 
rmtr 2, 9, and 27. W ~ h u t  the spin generalization, 
only primitive mot 2 finds the set. 

The Taylor 1 genetator produces CA26.Q a% 
mentioned above with GF(27) using the gemator 
polynomial (1 2 0 1). The primitive elements are 
given below. All of the set of eight pdymorphs of 
CA26.0 are produced by these primitive element pairs: 
{3,4), f3,6), (3-71, {3,9), {4,6), f4,7), {4,10), 
{6,9), {&I@),  f7.91, (7,101, and {9,10). The spin 
generahation does not affect the tesults far Taylor 1. 

For order 26, the Lenzpel-Golomb gensraton over 
GF(27) produce several examples, two af which we 
illustrate. The first few ~oiumn indices are given in the 
illustrations here; the full Costas mays or polymorphs 
of them are given in Table XII. 

The LempsI genemtor provides the order 25 
Costas array, (23,15,19,22.. .) which is dso given 
in [I 11. For a shift of one, the new extensian 
provides a symmetrical Costas array of order 26, 
( 1  1,1,25,17,21,24.. .). Other shifts, including zero, 
do not provide valid C o w  arrays. This Costas m y  
was found in [2 11 through a specialized search for 
symmetrical Costas arrays. 

The binpi generator for other primitive roots 
provides the order 25 Costas array (15,24,21,19. .  .). 
This is s pdymmph at' the prcvhm exampk. A 
shift of 24 prsvldes the order 26 Costas m a y  
of them are given in Table XII. 

The Lempel genemtor provides the order 25 
Costas array, (23,15,19,22.. .) which is dso given 
in [l  11. For a shift of one, the new extensian 
provides a symmetrical Costas array of order 26, 
( 1  1,1,25,17,21,24.. .). Other shifts, including zero, 
do not provide valid C o w  arrays. This Costas m y  
was found in [2 11 through a specialized search for 
symmetrical Costas arrays. 

The binpi generator for other primitive roots 
provides the order 25 Costas array (15,24,21,19. .  .). 
This is s pdymmph at' the prcvhm exampk. A 

Primitive Elements in GF(29) Costas Array of Onlet 1 

(3, 14) 
(3, 27) 

(8, 26) 
(10, 14) 
(10, 27) 
(11, 19) 

TABLE V 

TABLE VI 

New Singularity 1 Costas Arrays 1 
Primitive Elemat Indices in GF(27) Costas Array of Order 

{2, 21 CA26.3 
{ 4 7  6 )  CA26.0 

(4, 10) CA26.0 
(5, 5 )  CA26.3 

{6, 10) CA26.0 
{s, a! CA26.3 

111, 11) 42426.3 
02.  Z2) CA26.3 I. 

New Svbtrnctive Singularity 1 Costas Arrays 
- - 

- --- 
~rirnitivd-~lemeni Indices in GF(27) Corns Array of Qrdq 

(1,25,19,23,21.. .). This is a polymorph of the 
previous example. 

The LempcGGdlomb 3 generator prudacer ~ ~ 2 6 . i  
and CA26.5, and, with UE spm gmerdizations, ' 
CA26.4. The  base generator af order 27 Costas array! 
uses GF(29). The primitive root pairs and the Costad 
array of order 27 thai results are given in Table IV. 

77re new generator presented here is based on 
adding a dot at the singulaity of the LAmpel-CSoloml) 
2 works with GF(29) and produces CA26.0 and ' I 
CA26.3 as shown in  able-V. In this case, the spin 
generalization does not. prodwe additional Castas 
arrays. 

The new generatw pmeented here b e d  on - . . .  - . - .. , I 
pievious example. 

The Lempel-Gdlomb 3 generator produces CA26.2 
and CA26.5, and, with UE spm gmeralizations, 
CA26.4. The base generator af order 27 Costas arrays 
uses GF(29). The primitfve root pairs and the Costas a 

array of order 27 thai results are given in Table IV. 
The new generator presented here is based on A 

adding a dot at the singulaity of the LAmpel-CSoloml) 
2 works with GF(29) and produces CA26.0 and ' 

CA26.3 as shown in Table V. In this case, the spin 
generalization does not. prodwe additional Castas , 
arrays. 

- 1 



TABLE VII 
Ricard LG 3 Costas Arrays 

Primitive Element Indices in  GF(27) Costas Array of Order 26 

TABLE VIII 
Order 26 Costas Arrays Produced by Generators 

Method 26.0 26.1 26.2 26.3 26.4 26.5 

CA26.0 and, with the spin generalizations, CA26.3. 
Primitive element pairs in GF(27) and the Costas 
arrays generated are presented in Table VII. 

In summary, the generators produce the rows of 
Table XII, the comprehensive list of essential Costas 
arrays of order 26, according to the summary in 
able VIII. Those rows produced only when the spin 
generalization is enabled are denoted by "S" in the 
table. 

The Costas arrays CA26.3 and CA26.4 are 
symmetrical. The Costas array CA26.4 is found 
only when the spin generalizations are enabled. 
However, backtrack programming with preclusion 
bas apparently been implemented for symmetrical 
Cmtas arrays and completed up to order 32 [223 so 
we conclude that CA26.3 and CA26.4 are known as 

I sesults of that work. 

E. Summary 

I The new method presented here uses a 
modification of the inhomogeneity of the 

TABLE TX 
Costas Arrays Found by New Methods 

Asymmetrical Symmetrical 
Order Sum Diff Sum Diff 

Lempel-Golomb generator, and the Taylor 1 extension 
presented in [I 11 can be considered a special case. It 
applies whenever G F ( N  + 1) exists. Unlike previous 
extensions, it adds dots to the interior of existing 
matrices produced by the number-theoretic 
generators. 

Reference [19] recently presented a method for 
adding dots to the forbidden gap that occurs when 
Costas arrays produced by the Lempel-Golomb 
generator are viewed as producing doubly periodic 
quilts of identical Costas arrays separated by blank 
rows and columns. Four Costas arrays are presented 
as undiscovered, two of order 29 and one each of 
order 36 and 42. The one of order 36 presented 
in [23] can be found using methods given in [I13 
and generalizations by the authors, but the other 
three Costas arrays reported in [19] were previously 
unknown to the authors. 

The methods presented here produce Costas arrays 
for various orders as shown in Table IX. 

Of the Costas arrays enumerated in the tabk, two 
are new, one of order 36, (1,28,32,18,20,26,31,8,0, 
29,16,35,15,22,13,11,23,4,30,5,25,14,17,27,2~,6, 
24,2,10,19,7,3,34,33,12,9), and one of order 42, 
(0,38,9,3,26,32,37,35,11,2,36,8,20,22,33,19,41, 
23,31,15,12,39,13,17,34,27,4,25,40,30,29,18,5, 
14,24,7,10,6,1,21,28,16). The new methods find two 
of order 36, but one of them has been found by the 
rneth~ds_ofll~;?!, .andex.f.en@on~ a @  i s  -also _repo$ed 
in 11 91. &&rdj?un;:~Ri . ..-. . -..- J.F, .~ I [$ ' !~  

The second method introduced here finds three 
of order 8 that are not found by other generators but 
does not generate Costas m y s  that are unknown or 
not generated by the first method. 

BARD ET AL.: COSTAS ARRAY GENERATION AND SEARCH METHODOLOGY 



Order orCaplar Amvs 

Fig. 3. Numbers of Costas mays versus order. 

IV FINDING COSTAS ARRAYS THROUGH 
EXHAUSTIVE SEARCH 

A. Numbers of Costas Arrays as Function of Order 

A remarkable paper [20] appeared in 1988. 
Based on a probabilistic analysis of the backtrack 
programming algorithms that use the difference 
matrix, they arrived at an equation for the approximate 
number of Costas arrays versus order, 

( N: I ) (N+ l).W-l)(2N-3)/24 

Cbar(N) = (N!) . 1 - - 

In (22) ,  the parameter K is a free parameter, and 
the authors used it to fit to the known numbers of 
Costas arrays at that time, up to order 17. The value 
of K that gave the best fit for them was 1.1 11 ; we 
have extended that here to an rms fit to orders to 26, 
arriving at a value of 1.107814 for K. The result is 
shown as the bold solid curve in Fig. 3. 

The rationales given in the references are very 
convincing, and the fit  to real data is excellent over 
a wide range of orders. The numbers of Costas arrays 
generated for orders 27, 28, 29, and 30 are included in 
the plot. The implications of these results include the 
following. 

1) The backtrack programming methods spend 
most of their time near an intermediate recursion level, 
and software monitoring verifies this. 

2) The number of Costas arrays not "forced to 
exist" by number-theoretic considerations continues to 
decline, dropping below one pasr order 28. 

Work reported on in [20] treated the results of . . . .  . 
convinding,'and the kit to red dat'a is'~xcel1ent over 
a wide range of orders. The numbers of Costas arrays 
generated for orders 27, 28, 29, and 30 are included in 
the plot. The implications of these results include the 
following. 

1) The backtrack programming methods spend 
most of their time near an intermediate recursion level, 
and software monitoring verifies this. 

2) The number of Costas arrays not "forced to 
exist" by number-theoretic considerations continues to 
decline, dropping below one pasr order 28. 

I 6 I I i 6 21 

Order of Colas A~rays N 

Fig. 4. Number of Costas arrays for order to 26. 

noting that the first orders where none are known isi 

array of either of these n." 

'1 
32 and 33, "we challenge the reader to find a Cosm 

B. Complexity of Search Methods 

The definition of a Costas array as a permutation 
matrix with special restrictions does not directly 
lead to a simple method of finding them because the 
Costas condition is not easiIy posed in a simple way 
such as a set of constraint equations. The only known 
way to obtain all Costas arrays for a given order is 
an exhaustive search. The number of permutations of 
order N is N!, while the number of Costas arrays of 
order N increases to a maximum of 21,104 for N = 16 
after which the number drops rapidly. Fig. 4 shows a 
curve for orders 1-26. Results presented for the first 
time here include that there are 200 Costas arrays of 
order 24, 88 of order 25, and 56 of order 26. 

Exhaustive search, such as sequential generation 
of all N! permutation matrices and examining the 
difference matrix to determine which have the Costas 
property, is prohibitively slow for Iarge N. MucTech, 
a journal for serious Apple Macintosh developers 
and users, had a monthly contest, "Programmers 
Challenge," until 2002. For December 1999, the 
contest was generation of all Costas mays of order 24 
[24]. The winner produced a fast method of doing a 
search, but it was not fast enough to produce a search 
for order 24. The article was not clear on how high 
they did go. Until this disclosure, an exhaustive search 
had not been completed far orders greater than 23 
[23, 251. 
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property, is prohibitively slow for Iarge N. MucTech, 
a journal for serious Apple Macintosh developers 
and users, had a monthly contest, "Programmers 
Challenge," until 2002. For December 1999, the 
contest was generation of all Costas mays of order 24 
[24]. The winner produced a fast method of doing a 
search, but it was not fast enough to produce a search 
for order 24. The article was not clear on how high 
they did go. Until this disclosure, an exhaustive search 
had not been completed far orders greater than 23 
[23, 251. 



I 
d o d s  require about five times more computational 
murces for each succeeding order; this is observed 
to be independent of the order, the algorithm, the 
implementation, and the computer, and is consistent 
with [20] and our understanding of that work as 
.Interpreted here. From these estimates, all other 
' things being equal, a new order will be searched 
each three and a half years. Because we succeeded 

iin the order 26 search in 2004, these casual figures 
predict that order 32 will be searched by 2025 and 

I erder 33 results will follow about three and a half 
I years later. Results will likely be available sooner 
' fmm sources such as application of casually available 
w i v e  resources in developing and testing emerging 
computer technology in algorithms with significant 

I random branching such as backtrack programming, 
;development of a method faster than backtrack 
:.pgratnming with preclusion or enhancements on 
Idsting methods, application of more resources, or 
' olher influences. A search for order 32 with existing 

ethods will require about 15,000 times the resources 
&at the authors used to search order 26. 

Combinatoric Collaboration 

1) Overview: Our observation in subsection C 
-Is that the exhaustive search problem is, at best, 

-hard. Exploitation of symmetries, 
of implementation, and other preclusion 

see subsection E) will scale the curve, but 
m remains exponential-hard with a factor of 
for each increment of order. An enabling 
to find the few remaining unknown Costas 

m the near term is combinatoric collaboration. 
parallelism seems to be the path that Moore's 
taking at the time of this writing, networked 
ration as we have done with some af our 
es is an important step for results in the near 

column indices that represent the beginning of the 
block of cases searched by that run. The data is a 
log file of the cases started or completed. The search 
algorithm can be stopped at any time on any resource, 
leaving a truncated log file. These log files were sent 
to a centralized location and provided to an automated 
bookkeeping scheme that kept track of the cases run 
and the Costas arrays found. Blocks of cases to be run 
are dynamically allocated to resources as the project 
proceeds. In this way, resources of diverse types are 
coordinated with little or no duplication. 

E. Exhaustive Search with Backtrack Programming 
Method 

The method most often used, including in the 
Mac Challenge solution, is backtrack programming 
with preclusion [lo, 21, 24-26]. As often applied 
to exhaustive search of pennutation matrices for 
Costas arrays, this method sequentially builds up the 
column index representation. The criterion functions 
are the requirements that no column index may be 
repeated, &d that no row in the difference matrix 
may contain duplication. The method buitds a mask 
of allowed values for the next row using the portion 
of the column indices and difference matrix that exist 
at that point, talung the next available value in the 
active row, and proceeding to the next row. When 
an available value is found for the last row, a Costas 
array has been found. When a row is found that has 
no allowable values, the previous row is searched 
for the next available column index. When available 
indices in the first row are exhausted, the search is 
complete. The use of this method has the effect of 
reducing the complexity of an exhaustive search from 
N !-hard to exponential-hard, with time for searching 
order N proportional to about 5N. 

p Our cambinatoric collaboration consisted of three New E~~~~~~~~~ Search Method t ements: 
1) the algorithm, with an initialization shell that 

ows the algorithm to be started for three, four, or 
olumn indices that are set as inputs; 
available, idle computational resources 

ns owned by Lockheed Martin Advanced 
Laboratories on nights and weekends, 

mputers belonging to all authors, a 
cluster of cast~ff  machines, and a number 

rs left idle on weekends; 
eping and dynamic problem parsing 

1) Overview: We disclose an improved algorithm 
that is based on computing and storing the necessary 
elements of the difference table as a stack of bitmasks. 
The disallowed column index values of the next row 
are determined by combining the vector difference 
information of this table with the previously used 
column data. 

The method is recursive. The Costas array is 
found, beginning with the first row, in column index 
representation. At a given point in the search: 

that callaboratim of sepxate 1) The depth of recursion is equal to the number 
ties. of rows defined. 
) Collaborative Methods: The co1lahration 2) The search is executed through computation 
ated by allocation of diffefent parts of the of the portion of the difference matrix that is defined 
rn to the various resources. The parts of the (e.g. the upper triangular part bounded by the column 
m are denoted by the first three, four, or five indices found). 
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The d i f f m c e  matri~ is repsent& as a set 
of masks, oae for each row, with the diffmnces 
represented, as the poeition of a bit st$ to I .  This 
innovation allows efficient implementation in nearly 
any commonly used architecture. 

The method begins with definition of tha first. row 
index, or the fust few, defined by a trivial generation 
of a few column indices consistent with the Costas 
property. At the beghing of a recursion level, the 
array of masks representing the difference matrix 
for the previous recursioq lev4 ic updated by setting 
the bits appropriate to the newest column index and 
stored in the stack as local variables for the current 
recursion level. The method then checks the bits in the 
row of the difference matrix for an allowable value. If 
it finds a bit that is not set, it sets the current column 
index to that trir position and goes td the next level 
of recursion. If no bits are available, the dgbrithm 
backtracks to the previous level. If the recursion level 
advances to the mder of the array, the last mlum 
index has been found, a d  a valid Costas army is 
defirled. 

2) Inpegration of Se~trch with Collabo~dtion: The 
first few levels are used to start a Mock of indices 
to search. Thee and four levels were used for 
order 24 and 25, and four and five Ievds were used 
for order 26. 

3) Word Length C~mfderutions: rhe elaments 
of the difference matrix will vmy from -(N - 1) to 
+(N - I), so an offset of at l a a t  (N - 1) must be 
used to pruvide nonnegative bit positions. The kngth 
of h e  maek musk k at h s t  2 .  N - 1 bits, which 
m e w  that the mask must have mum than 32 bits for 
orders greater than 16. Here we show how to use two 
32-bit words to implement a 64-it  mask for the base 
algorithm. 

We begin with a fm raw indices, with the masks 
representing the rows of the diffemce mamrix. The 
remainder of the branch is analyzed recmsively 
according to the method presented above, and we 
use two 32-bit bitmasks to represent each row of 
the difference matrix. We use CHIC 32-bit bitmask 
for positive differences and another to represent 
neghve differences. We use a bitwise logical' AND 
operation to set bits in each Mtmask, and we avoid 
branching by using each dBerencc to set bits in both 
masks and storing zeros in the lookup table to allow a 
no-operation bit set when negative differences we to 
set bits in the positive difference mask, and vice-versa. 
This method is explained in detail in [263. 
representing the rows of the difference matrix. The 
remainder of the branch is analyzed recursively 
according to the method presented above, and we 
use two 32-bit bitmasks to represent each row of 
the difference matnx. We use one 32-bit bitmask 
for positive differences and another to represent 
negative differences. We use a bitwise logical AND 
operation to set bits in each bitmask, and we avoid 
branching by using each difference to set bits in both 
masks and storing zeros in the lookup table to allow a 
no-operation bit set when negative differences are to 
set bits in the positive difference mask, and vice-versa. 

The haimntal flip qnmetly is eliminated p m  
as before, by scanning only half d any row. In 
case of f l  ~r 26 far the rnickile-out approach, 
(zero-based indexing) isi scanned f t ~ m  0 to 1 
vertical symmetry may thsn be eliminated 
scanning row 13 from within the margins wt 
12 as  speci6ed by the fdlowing loop: 

for (row[l2] =0;row[12]< 13;row[12]++~ 

for (row[l3] - row[l2] + I; row[13] < 26 

- row[l2]; rowll3]+ +) 

{- . . I  
The penalty associated with keeping mck of i, 

variables and checking constraints in two dire~tio?~ 
simulta~ously was too costly, sa alternative 
techniques were developed for the top-down appro 

1 )  Corner Dot &tension: I f  dl mays of ord 
N are known, all.(N + 1) arrays with zero for a 
starting index are boyn simply by appending a do 
in the upper left hand corner of all order N arrays,' 
and screening the results for the Costas property. 

' 

Therefore, all arrays with a corner dot rnay be 
from the search if the knowledge of the previo 
is complete. 

2)  Pmgressire R a n d a n c y  Elimination: If 
Costas arrays with starting index 0 are known. 
through rotation symmetry, all the arrays with a 
any corner (as representid below) have been cove 

So from that point on, no mays with e dot iq 
any m e r  need t6 be searched. This wncept may BtY 
extended, so when all arrays with a starting index o f f  
are checked, by rotalion md m p o s e  symmetries, all 
of the seven poiymorphs are fully covered as wkI1: . 1 

Therefore, after ehausting an arrays with starting ] 
indices of 0 and I ,  there is no  need to look far a dot' 1 . _ _____._-... f . --. - - --, -- - - ~ - -  -. , - --.. .. - - - - 4  

any corner need to be searched. This concept may be 
extended, so when all arrays with a starting index of 1 
are checked, by rotation and transpose symmetries, all 
of the seven polymorphs are fully covered as well: 

Therefore, after ehausting an arrays with starting; 1 - -  . - - . - - -  



TABLE X 
All Fundamental Costas Arrays of Order 24 

mnnique were not employed, they would be scanned 
h m  0 to 25, resulting in redundant coverage. 

3) Progressive Impossibility Exclusion: If the 
search has covered all starting indices up to, but 
'excluding the middle index for odd N, or the middle 
iwo indices for even N,  there is no need to search 

.fmher. Consider the following possible configurations 
"of dots in the outer rows and columns of an even 
':order array, that could not have been covered by the 
' preceding search: 

results such as showing that there are no symmetric 
Costas arrays of order 24 and finding symmetrical 
Costas arrays of higher orders. In [27] the number 
of symmetrical Costas arrays is enumerated to order 
3 2 ( 2 7 : 7 , 2 8 : 0 , 2 9 : 5 , 3 0 : 4 ,  31:0,  and32:0),  a 
result obtained by syrnmetryconstrained searches 
and reported in [225, which also reports searches over 
antireflective and consecutive symmetries. 

V. RESULTS AND CONCLUSIONS 

A. Results of Exhaustive Searches for Orders 24, 25, 
and 26 

There are 200 Costas arrays of order 24, 88 of 
order 25, and 56 of order 26. Table X, Table XI and 
Table XI1 list all fundamental Costas arrays of order 
24, 25, and 26, respectively. Each entry in the tables 
is a basis for a set of eight, except those in boldface 

These satisfy the constraint that there exists exactly which are symmetrical and, thus, a basis for a set of 

t in any row or column, but are all fruitless four. Preliminary results of this effort were given in 

es because the dots in the perimeter form a [25] and [26]. The last two Costas arrays in Table XI1 

gram, which results in a difference table are first presented here. 

on corresponding to sidebbes of height 2 in 
tocorrelation function. B. Known Costas Arrays of Orders to 200 

. Symmetry-Based Searches Number-theoretic generators provide Costas arrays 
for a wide variety of orders, and there are some 

In [21], assumptions of symmetry have been extensions based on augmenting or decrementing rows 
sed to provide faster search schemes that allow and columns of existing Costas arrays [ l l ] .  We have 
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TABLE XI 
All Fundamental Costas Arrays of Order 25, Symmetrical in Boldface 

TABLE XU 
All Fundamental Costas Arrays of Order 26, Symmetrical in Boldface 

extended upon these. These generated Costas arrays 
provide an existence proof of Costas arrays for most 
orders and prove certain early conjectures in [ I  I] such 
as no upper bound on the number of Costas mays or 
the orders for which Costas arrays exist. 

Fig. 3 shows our curve modified from that of [20], 
a smooth approximation of the total number of Costas 
arrays for orders up to 28. Fig. 5 shows this same 
curve against a background of points representing 
the numbers of generated Costas arrays of order up 
to 200. For orders between 6 and 26, the generators 
do not find all Costas arrays, so the points fa11 below 
the curve. Since the minimum non-zero number of 
Costas arrays of a given order is four (when only one 
symmetrical Costas array exists as for orders 55, 67, 
and others )this left the bottom of the plot free to 
show the cases where no Costas arrays are known. 
As the note on the plot states, we use this to show 
the orders, such as 32, 33, 43, 48, 49, etc. that have 
no known Costas arrays as having one on the plot; 
this allows the orders for which no Costas arrays are 
known to be highlighted there. 

With this work, all existing Costas arrays up 
to order 26 are available, and number-theoretic 
r r ~ n  P Y ~  n c l n n ~  n r n x r ;  e tifill r n r t a c  
to 26b~To?&'aers getween 6 an22'8, Ihe generators 
do not find all Costas arrays, so the points fa11 below 
the curve. Since the minimum non-zero number of 
Costas arrays of a given order is four (when only one 
symmetrical Costas array exists as for orders 55, 67, 
and others )this left the bottom of the plot free to 
show the cases where no Costas arrays are known. 
As the note on the plot states, we use this to show 
the orders, such as 32, 33, 43, 48, 49, etc. that have 
no known Costas arrays as having one on the plot; 
this allows the orders for which no Costas arrays are 
1 *- L- L:-Ll:-L.-A *I---- 

Fig. 5. Costas arrays, all to order 26 (solid curve), generated to 
order 200 (points). 

given here at the end of subsection D. As Fig. 5 
shows, the number available generally increases with 
order, and the authors have generated Costas arrays of 
very large orders. 

Two new extensions presented here are based 
on variations of the Lempel-Golomb generator. 
The new extensions produce a number of Castas 
l r r 0 l l C  p _ L ~ > l \ ~ z l l J i b \ A  I I U H L J  

I 4 - - d. 1 
n so I on 150 200 

Ordcr ofC o m \  Arrilbs 

Fig. 5. Costas arrays, all to order 26 (solid curve), generated to 
order 200 (points). 

given here at the end of subsection D. As Fig. 5 
shows, the number available generally increases with 
order, and the authors have generated Costas arrays of 
very large orders. 
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order 26. Number-theoretic constructions from [l  11 
mi generalizations by the authors and others produce 
196 Costas arrays of order 27, while the probabilistic 
prediction is 7.8. Above order 28, the probabilistic 
eshnate drops below one, and has an asymptotic 
form 

for large N. We see the parabolic shape of this 
curve in the figures. The maximum peak numbers 
of generated Costas arrays appears, from Fig. 5, 
ep be bounded by about N~ for large N. Clearly, 
there are two influences on the number of Costas 

,mays as a function of order, and the probabilistic 
curve dominates for orders below about 25 and 
k numbers determined by number-theoretic 
considerations dominate for orders'above 26. We see 

' fmm Table IX above that the methods first presented 
here Bnd Costas atrays of order 52 and below. 
Similar observations apply to the spin generalizations, 

. #E method presented in [19], and the restricted 
; a c h e s  in [21j, [22], and other methods that use 
I searches focused on variations of the overconstrained 
I Cmtas arrays found by the number-theoretic 
- gtnerators. 1 i, One possible conchsion is that as N increases, the 

h&rs of Costas arrays that are not found by the 
I mber-theoretic generators and their generalizations 

I kreases and the probability of their existence 
hclims. It appears that none are known of orders 

I much larger than 50. These are focused searches in 
which the probability of a Costas array is much higher 

..LM that used in the derivations of the probabilistic 
gwes  in [20], but the probability of existence of even 
tbchtse decreases as N increases. 

This brings us to the question of the existence of 
Costas arrays of order 32 or 33, the lowest orders 
for which no Cosbas arrays are known at this time. 
Since the focused searches do find new Costas arrays ph er orders, the possibility of Costas arrays for 

e orders cannot be ruled out on the basis of our 
ohations.  
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