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Topics

● Mission and Requirements
● Single Object Tracking Fundamentals
● Fundamentals of Tracking in Dense 

Environments
● Care and Feeding of Kalman Filters
● Care and Feeding of Data Fusion Methods
● Summary
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Supplements to Today’s Presentation

● Recent IEEE Presentations
● IEEE AESS Virtual Distinguished Lecturer Webinar Series

● http://ieee-aess.org/webinar-series-october
● October 12, 2021, Tracking and Sensor Data Fusion, by Wolfgang Koch
● October 19, 2021, Data Association and Target Tracking by Peter Willett
● October 28, 2021, Systematic Filter Design for Tracking Maneuvering Targets, 

by Dale Blair

● IEEE AES Tutorials
● https://ieee-aess.org/aess-systems-magazine-tutorials-list
● Blackman, S. on the MHT (2004)
● Bar-Shalom et. al. On Probabalistic Data Association (2005)

● There is a Separate Appendix to This Presentation with Math and 
Equations

http://ieee-aess.org/webinar-series-october
https://ieee-aess.org/aess-systems-magazine-tutorials-list
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Mission and Requirements

● Scenarios are anywhere we have a requirement for 
tracking objects

● Mission and Requirements of Situation Awareness Flows 
Down to Tracker Configurations

● A Theater of Operations may be comprised of Multiple 
Scenarios

● Computer Requirements Flow Down from Performance 
Requirements
● Processor performance has improved more than three orders of 

magnitude since 1985
● Focus on performance first, then computer requirements
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Common Scenarios

● Surveillance Area or Volume, Battlefield, Potential and Active
● Air
● Space
● Surface

● Maritime
● Littoral area surveillance
● Civilian and commercial traffic monitoring
● Search and rescue
● DHS requirements
● Open Ocean
● Subsurface
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Stated and Implied Requirements

● Stakeholders with stated or implied requirements include
● Government and commercial funding organizations
● Program management and supervising organizations
● Laws and regulations, including DFARS
● Users of the system and data, including ILS and support organizations
● Future users, disposal and environmental concerns

● Key requirements are on data and interfaces
● Information inputs such as ADS-B and SSR, AIS, C2, GMTI, etc.
● Data requirements

● Object position and velocity, with accuracies
● Update rate, descriptive data content

● Classification; what is the object under track
● Object Situation:  underway, adrift, distress, attack, cruise, boost,…
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Mahalanobis Distance and Localization Ellipsoid

● Mahalanobis Distance s, for Filter Error

● Quantity s2 is chi-square distributed with k degrees 
of freedom, where k is the number of measurements

● Localization Ellipsoid
● Interior of surface defined as the locus of     in the 

quadratic form

e⃗ =    y⃗− h⃗( x⃗EXT ) , measurements minus expected measurements

E =    Cov {e⃗ }=H⋅PEXT⋅H
T+R ,  H=

∂ h⃗ ( x⃗EXT )
∂ x⃗ EXT

s =    √ e⃗ T⋅E−1⋅⃗e

v⃗T⋅E−1⋅v⃗=1

v⃗
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Propagation of States and Covariance

● Motion

● Propagation of covariance through a 
transformation

d x⃗
d t

=    f⃗ ( x⃗)⋅x⃗+G⋅⃗w (t ) ,   x⃗0= x⃗OLD ,   Cov {w⃗}=Q

Φ(t , t 0) =    
∂ x⃗
∂ x⃗0

,   
dΦ
dt

=
∂ f⃗ ( x⃗)
∂ x⃗

=F ( t) ,   Φ(t 0)=I

x⃗ (t ) ≈    Φ(t , t 0)⋅⃗x0+G⋅⃗w
P =    Φ⋅P0⋅Φ

t+G⋅Q⋅GT

y⃗ =    h⃗ ( x⃗)+ v⃗ ,   Cov {v⃗ }=R

H =    
∂ h⃗ ( x⃗)
∂ x⃗

Cov { y⃗ } =    H⋅P⋅HT+R
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Classical Kalman Filter Concept
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Classical Kalman Filter Operations

Q

R

1
z

K

 K.(*)
+

-

+
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PEXT=Φ⋅POLD⋅Φ
T+G⋅Q⋅GT

K=PEXT⋅H
T⋅(H⋅PEXT⋅H

T+R)−1

e⃗= y⃗− h⃗ ( x⃗EXT )

h⃗ ( x⃗ EXT )
x⃗ EXT ∫dt f⃗ ( x⃗ )

PNEW
−1 =PEXT

−1 +HT⋅R−1⋅H PNEW
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PEXT

Measure-
ment
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Realities of Kalman Filters

● The Extended Kalman Filter Works with Non-Gaussian Noises
● Computed measurements such as monopulse
● Nonlinear transformations of noisy quantities

● Measurements are Often Correlated
● Sensor fusion is often with data from Kalman filters, which produces highly 

correlated errors
● Any filtering of measurements produces correlation of errors

● Redemption
● Classical Kalman EKF error analysis is variance analysis
● Kalman filter updates are minimum variance estimates
● Resulting biases are nearly always much smaller than random errors
● Filter configuration can be modified to account for correlated measurements
● Batch estimators are tolerant of correlated noise
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Estimated Covariances in Kalman Filters

● In most practical Kalman filters
● Estimated variances are often about five times that of the actual variances of the 

estimated states
● Forcing variance estimates smaller in the Kalman filter results in slowed following of 

changes in behavior of the tracked object
● Actual variances of filter outputs is best obtained by separate covariance estimators

● More Accurate Covariances
● Supports better association of detection data to object tracks
● Improves reliability of correct association in dense environments

● Batch estimators
● Asymptotically statistically efficient
● Provide accurate estimates of covariances of the states
● Provide an opportunity to improve association history
● Can be used to re-initialize Kalman filter with more accurate states, covariances
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Other Tracker Types

● Chapman-Kolmogorov Expected States
● See next slide for the Chapman-Kolmogorov equation
● Back to basics, general probability distribution functions, recursively 

estimates Bayesian probability density of estimated states

● Particle, Unscented Filters use Mapping
● Multiple Markov processes using specific “noise” values
● Use importance sampling or unscented transformations
● Estimate states, covariances from samples of Markov process 

results

● Must solve the same measurements-to-track association as 
the Kalman filter trackers to define measurement data
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Chapman-Kolmogorov Equation

● Probability Density of the State Vector

● Each Term:

p( xk|Z1
k)=

p ( zk|xk )∫ p( xk|xk−1)⋅p ( xk−1|Z1
k−1)⋅dxk−1

p( zk|Z1
k−1)

p( xk|Z1
k ) The desired pdf of current states x k  given databaseZ1

k

p ( xk|xk−1) Provided by the state transision (object motion) model

p( xk−1|Z1
k−1) This is the result of the previous update

p ( z k|xk ) Density function of the measurements

p( zk|Z1
k−1) Normalizes RHS pdf, independent of state vector

From AESS Distinguished Lecturer Series, October 19, 2021, by Peter Willett (U. Conn.), slide 6
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Care and Feeding of Kalman Filters

● Tracker Requirements can Conflict
● Association reliability, responsiveness, accuracy
● Begin design with a three-tier tracker architecture to address each 

requirement separately
● Combine tracker later if performance in a tier meets two requirements

● The Covariance Estimation Process
● Lower estimated covariance gives better accuracy, but is also a trade 

with responsiveness
● First priority is to avoid covariance collapse
● Avoid process noise where it isn’t needed
● Adaptive, not-full-rank process noise can support tracking high 

performance objects with minimum accuracy impact
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Make the Kalman Update Statistically Efficient

● The Kalman update equation

● Statistically efficient when the states are linear functions of the measurements

● Simple, obvious general policy:

● At the Kalman update, make the states the same as the measurements
● Aircraft trackers using ln(R/R0) and direction cosines for aircraft position

● Very well conditioned numerically, all quantities unitless and small in magnitude
● Simple in formulation; isometric relation between quaternions and complex variables 

supports simple algebraic equations
● Doppler measurements map well to (range rate)/(range)

● Compute object position from states in Cartesian coordinates for C2

x⃗ NEW= x⃗EXT+K⋅( y⃗− h⃗ ( x⃗EXT ))

h⃗ ( x⃗ EXT )=H⋅⃗x EXT

H= I
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Tracker Architectures

● Develop Design with Three Tiers of Trackers
● Simple one-measurement adaptive estimators of each individual measurement type

● Separate simple EKFs for range, direction cosines, Doppler (or other local sensor outputs)
● States are estimates of measurements and derivative(s)
● Running estimate of process noise amplitude to adapt to object maneuvers
● Serves to support association

● Accuracy-driven main tracker
● Kalman filter design driven by accuracy requirements
● Uses IMM, supports MHT, supports real-time tracking, alerting

● Batch estimator
● Achieves essentially the Cramer-Rao Bound
● Supports decisions

● Advantages
● Separates functions of association, tracking, decisions
● Does better job of all three

● Combine Tracker Tiers Later if Performance Robustly Meets Requirements



11/16/2021  18 of 36

Covariance Estimation

● Covariance Collapse:  Matrix P Becomes Nearly Singular
● Filter loses responsiveness to tracked object motion
● Always happens

● When you compute PNEW = (I – K.H).PEXT (causes true filter instability!)
● When you use zero process noise in acceleration states in NCA filters, velocity states in 

NCV filters

● Exhibited with “easy” tracks (high SNR, straight-line constant velocity objects)

● Steps to avoid covariance collapse
● Use nonzero process noise in acceleration states of NCA filters, velocity 

states in NCV filters
● Update covariance matrix using one of

● Classical:  Joseph Stabilized Form, PNEW = (I – K.H).PEXT
.(I – K.H)T + HT.R.H

● Better:  Inverse form, PNEW
-1 = PEXT

-1 + HT.R-1.H
● Best:  A square root filter
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Square Root Filters

● All Carry Covariance Matrix as Matrix Square Root
● A Cholesky factorization of the covariance matrix, its inverse, or a matrix equal 

to a similarity transform of a Cholesky factorization
● A Square Root filter cuts word length requirements for the covariance matrix P 

in half

● Best-Known Types of Square Root Filters
● Square Root Information Filter (SRIF)
● UDUT Filter
● Potter square root filter

● All Square Root Filters
● Are algebraically identical to EKF
● Represent covariance as necessarily positive definite
● Allow bypassing of EKF state extrapolation with better object motion models
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Minimizing Process Noise

● Use Adaptive Process Noise
● Estimate a scale factor on the process noise covariance
● Use squared Mahalanobis distance of error signal as a 

measurement of process noise magnitude of variance

● Minimize use of process noise
● Models of motion of exoatmospheric objects usually don’t need 

process noise
● Use accurate motion models to characterize complex object 

motion (maneuver, re-entry, boost, etc.)
● Ground objects have little vertical process noise
● Use “smart” process noise when applicable
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Tracking High Performance Objects

● Aircraft motion uncertainties
● Unalerted:  uncertainties are mainly along velocity vector
● Alerted and engaged:  larger uncertainties mostly normal to velocity 

vector
● Use IMM to model and adjust to abrupt changes in object motion
● Use adaptive process noise to adjust to changes in object dynamics

● Boosting, Re-Entering Object Uncertainties are Mostly Along 
Acceleration Vector

● Use lower rank process noise, non-square G
● Smart process noise
● Minimizes use of process noise, does use what is required
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Example of Smart Process Noise

● Use matrix G to define aircraft coordinates front, 
left, up
● Object velocity, normalized, is toward front
● Object acceleration, normalized, is toward up

● Use process noise covariance Q to control 
relative magnitudes in aircraft coordinates

x⃗=[ p⃗v⃗a⃗ ],   G=[ 0⃗ 0⃗ 0⃗
0⃗ 0⃗ 0⃗

u⃗v NOSE u⃗vLEFT u⃗vUP
],   Q=[σNOSE

2 0 0

0 σLEFT
2 0

0 0 σUP
2 ]
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Dense Environment Considerations

● When aircraft tracks interact, couple the trackers
● Example:  Aircraft moving together in a formation
● Carry two or more objects in the same Kalman filter
● Augment the state vector to include states for all objects tracked here
● Augmented covariance matrix includes cross-correlations between 

tracks

● When return-to-track associations become ambiguous
● Use Track Before Detect methods
● Multiple Hypothesis Tracking (MHT) is the best right now
● Target-oriented, Hypothesis-oriented (TO-MHT, HO-MHT)
● Probabilistic MHT
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Track Before Detect

● Methods
● Multiple Estimator – Multiple Hypothesis Tracking (MHT)
● Interactive Multiple Models (IMM) compares results of multiple object 

behavior models within a single Kalman update
● Range-Doppler Map Warp/Averaging
● Others

● Practical Considerations
● MHT is the “gold standard” but is an art and a science for each 

application
● IMM can be used alone or combined with MHT
● Some methods, like range-Doppler map averaging, don’t perform 

detection in themselves
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Warped Range-Doppler Map

● Performs Multiple Simultaneous Estimation of Returned Signal 
Amplitude for Each Cell in the Range-Doppler Map

● Each Cell is a Simple NCV Kalman Filter State or Measurement
● Estimates the target signal strength in each range-Doppler map cell
● Warping is by interpolating each Doppler row by a delta range found as the 

range rate for that Doppler, multiplied by the time between range-Doppler 
maps

● Update is by averaging warped previous map with current map
● Noise and clutter average down, objects average up

● Detection is Done on the Averaged Range-Doppler Map
● Optimal for constant range rate objects
● Accelerating objects will have a signature that is a “trail” that can be searched 

for using image processing methods

Δ R=[dR/ dt ]⋅Δ t
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Care and Feeding of Data Fusion Methods

● Why Data Fusion?

● Realities of Data Fusion

● Dealing With Data Fusion Issues
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Principle and Motivation for Sensor Fusion

● Given: two or more state vectors with their covariance matrices
● Combining them (see Appendix)

● Merged localization ellipsoid is wholly contained within every 
input localization ellipsoid

● Problem:  Data From Different Sensors
● Will have biases that almost always drift with time
● Object Positions are usually provided in different coordinate systems
● C2 and other sensor data may have different state vectors

PNEW
−1 =    P1

−1+P2
−1+...=∑

i

P i
−1

x⃗ NEW =    PNEW⋅(P1
−1⋅⃗x1+P2

−1⋅x⃗2 ...)=PNEW⋅∑
i

Pi
−1⋅x⃗ i
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Dirty Secrets in Data Fusion

● There is no substitute for a good sensor
● Downstream processing cannot absolve the sins of 

upstream processing.
● The fused answer may be worse than the estimate from the 

best sensor.
● There are no magic algorithms.
● There will never be enough training data.
● It is difficult to quantify the value of data fusion.
● Fusion is not a static process.
● From Ligins, Hall & Llinas, pp 11-12
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Data Fusion Issues

● Coordinate and Time Offsets
● Object positions, velocities from C2 will differ from local coordinates of the same 

objects
● Biases will drift, may be different for objects in different positions
● Systems sending data via C2 will have clock offsets, data may not be current

● Methods to Deal With Offsets
● Use training data; including real data reduces surprises later
● When biases are small and variable, model them as noises
● When biases are large or drift with time, estimate them as states
● When data is old, extrapolate it to current time and fuse

● Correlated Measurement Errors
● Model correlated data as a Markov process, adjust tracker configuration accordingly
● Change the system model when needed



11/16/2021  30 of 36

Summary

● Begin With Requirements
● Stakeholder requirements
● User requirements
● Interoperability, ILS, environmental, and disposal requirements

● Observe limitations
● System implementation resources

● Facilities and personnel
● Technology
● Real data for development and testing

● Schedule and Budget

● Minimize the Use of Process Noise
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Keep a Systems Engineering Perspective

● Employ Risk Management
● Defense Acquisition University Summary:  

https://www.dau.edu/tools/Lists/DAUTools/Attachments/
140/RIO-Guide-January2017.pdf

● Problems revealed in I&T can ripple back to starting 
requirements

● Have a plan for everything predictable

● Use a Statistically Efficient Kalman Update
● Tolerating a nonlinear measurement equation increases 

the covariance of the updated state vector
● The “hit” on performance accrues every update

https://www.dau.edu/tools/Lists/DAUTools/Attachments/140/RIO-Guide-January2017.pdf
https://www.dau.edu/tools/Lists/DAUTools/Attachments/140/RIO-Guide-January2017.pdf
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Use Real Data in Development

● Simulation Data Incorporates
● What you predict will happen, exactly
● Well-behaved noise
● Great for early development

● Real Data Incorporates
● What happens out there that you don’t know about
● All signals including overlapping returns and  interference
● Noise as seen by the sensor outputs, C2, etc.
● Surprises in real data are a big plus for the developer

The world will do what it wants to do, not what you think it will do. (John Nash)
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Coordinate Systems are Critical

● Different Coordinate Systems
● Measurements and Kalman update – sensor coordinates
● Object motion – object coordinates, NED, ECIC, platform coordinates, as 

appropriate for accurate object motion modeling
● C2 data – Battlefield coordinates specified by BMC4I

● Hazards in Coordinate Systems
● Use of inertial over long periods must account for Earth’s rotation
● Use of Earth-rotating NED or radar coordinates must include Coriolis in 

object motion models (or, better, model the object motion in Earth-rotating 
sensor or object coordinates)

● For exoatmospheric objects, use ECIC coordinates
● Coordinate origins, orientations, physical units, effective time epoch, all 

must agree in data hand-offs
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Realities of Statistical Estimation

● There is a Trade Between Complexity and Accuracy
● Modeling tracked object behavior as process noise allows very simple object motion 

models but allows unnecessary process noise to map into tracked position errors
● Accurate models of object behavior minimize required process noise for more robust 

operation
● Less process noise produces more accurate tracks, better data-to-track association

● Adding States Reduces Accuracy
● Information provided by sensors is bandwidth or data rate times dynamic range
● Information in all states cannot exceed the input information
● Adding states dilutes information available to estimate each state

● Add states Cautiously
● When necessary to estimate drifting biases
● Temporarily, when useful in development
● On operator command or automatically when appropriate
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Conclusion

● A More Accurate Tracker Supports Better 
Association

● Use Statistically Efficient Kalman Update
● Keep Process Noise to an Absolute Minimum
● Consider All Appropriate Tracker Types
● When Object Density Impacts Tracker 

Performance, Look at an MHT
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Appendix and Bibliography
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