Multiple Target Tracking

Tracking and Data Fusion with a Requirements Perspective

James K Beard, Ph.D. EE jkbeard@ieee.org http://jameskbeard.com

Philadelphia IEEE Section Night November 16, 2021

11/16/2021 1 of 36

Topics

- Mission and Requirements
- Single Object Tracking Fundamentals
- Fundamentals of Tracking in Dense Environments
- Care and Feeding of Kalman Filters
- Care and Feeding of Data Fusion Methods

Summary

11/16/2021 2 of 36

Supplements to Today's Presentation

- Recent IEEE Presentations
 - IEEE AESS Virtual Distinguished Lecturer Webinar Series
 - http://ieee-aess.org/webinar-series-october
 - October 12, 2021, Tracking and Sensor Data Fusion, by Wolfgang Koch
 - October 19, 2021, Data Association and Target Tracking by Peter Willett
 - October 28, 2021, Systematic Filter Design for Tracking Maneuvering Targets, by Dale Blair
 - IEEE AES Tutorials
 - https://ieee-aess.org/aess-systems-magazine-tutorials-list
 - Blackman, S. on the MHT (2004)
 - Bar-Shalom et. al. On Probabalistic Data Association (2005)
- There is a Separate Appendix to This Presentation with Math and Equations

11/16/2021 3 of 36

Mission and Requirements

- Scenarios are anywhere we have a requirement for tracking objects
- Mission and Requirements of Situation Awareness Flows Down to Tracker Configurations
- A Theater of Operations may be comprised of Multiple Scenarios
- Computer Requirements Flow Down from Performance Requirements
 - Processor performance has improved more than three orders of magnitude since 1985
 - Focus on performance first, then computer requirements

11/16/2021 4 of 36

Common Scenarios

- Surveillance Area or Volume, Battlefield, Potential and Active
 - Air
 - Space
 - Surface
- Maritime
 - Littoral area surveillance
 - Civilian and commercial traffic monitoring
 - Search and rescue
 - DHS requirements
 - Open Ocean
 - Subsurface

11/16/2021 5 of 36

Stated and Implied Requirements

- Stakeholders with stated or implied requirements include
 - Government and commercial funding organizations
 - Program management and supervising organizations
 - Laws and regulations, including DFARS
 - Users of the system and data, including ILS and support organizations
 - Future users, disposal and environmental concerns
- Key requirements are on data and interfaces
 - Information inputs such as ADS-B and SSR, AIS, C2, GMTI, etc.
 - Data requirements
 - Object position and velocity, with accuracies
 - Update rate, descriptive data content
 - Classification; what is the object under track
 - Object Situation: underway, adrift, distress, attack, cruise, boost,...

11/16/2021 6 of 36

Mahalanobis Distance and Localization Ellipsoid

Mahalanobis Distance s, for Filter Error

$$\vec{e} = \vec{y} - \vec{h}(\vec{x}_{EXT})$$
, measurements minus expected measurements

$$E = \text{Cov}\{\vec{e}\} = H \cdot P_{EXT} \cdot H^T + R, H = \frac{\partial \vec{h}(\vec{x}_{EXT})}{\partial \vec{x}_{EXT}}$$

$$s = \sqrt{\vec{e}^T \cdot E^{-1} \cdot \vec{e}}$$

- Quantity s² is chi-square distributed with k degrees of freedom, where k is the number of measurements
- Localization Ellipsoid
 - Interior of surface defined as the locus of \vec{v} in the quadratic form

$$\vec{\mathbf{v}}^T \cdot E^{-1} \cdot \vec{\mathbf{v}} = 1$$

Propagation of States and Covariance

Motion

$$\frac{d\vec{x}}{dt} = \vec{f}(\vec{x}) \cdot \vec{x} + G \cdot \vec{w}(t), \quad \vec{x}_0 = \vec{x}_{OLD}, \quad \text{Cov}\{\vec{w}\} = Q$$

$$\Phi(t, t_0) = \frac{\partial \vec{x}}{\partial \vec{x}_0}, \quad \frac{d\Phi}{dt} = \frac{\partial \vec{f}(\vec{x})}{\partial \vec{x}} = F(t), \quad \Phi(t_0) = I$$

$$\vec{x}(t) \approx \Phi(t, t_0) \cdot \vec{x}_0 + G \cdot \vec{w}$$

$$P = \Phi \cdot P_0 \cdot \Phi^t + G \cdot Q \cdot G^T$$

Propagation of covariance through a transformation

$$\vec{y}$$
 = $\vec{h}(\vec{x}) + \vec{v}$, $Cov\{\vec{v}\} = R$
 H = $\frac{\partial \vec{h}(\vec{x})}{\partial \vec{x}}$
 $Cov\{\vec{y}\}$ = $H \cdot P \cdot H^T + R$

11/16/2021 8 of 36

Classical Kalman Filter Concept

11/16/2021 9 of 36

Classical Kalman Filter Operations

11/16/2021 10 of 36

Realities of Kalman Filters

- The Extended Kalman Filter Works with Non-Gaussian Noises
 - Computed measurements such as monopulse
 - Nonlinear transformations of noisy quantities
- Measurements are Often Correlated
 - Sensor fusion is often with data from Kalman filters, which produces highly correlated errors
 - Any filtering of measurements produces correlation of errors
- Redemption
 - Classical Kalman EKF error analysis is variance analysis
 - Kalman filter updates are minimum variance estimates
 - Resulting biases are nearly always much smaller than random errors
 - Filter configuration can be modified to account for correlated measurements
 - Batch estimators are tolerant of correlated noise

11/16/2021 11 of 36

Estimated Covariances in Kalman Filters

In most practical Kalman filters

- Estimated variances are often about five times that of the actual variances of the estimated states
- Forcing variance estimates smaller in the Kalman filter results in slowed following of changes in behavior of the tracked object
- Actual variances of filter outputs is best obtained by separate covariance estimators

More Accurate Covariances

- Supports better association of detection data to object tracks
- Improves reliability of correct association in dense environments

Batch estimators

- Asymptotically statistically efficient
- Provide accurate estimates of covariances of the states
- Provide an opportunity to improve association history
- Can be used to re-initialize Kalman filter with more accurate states, covariances

11/16/2021 12 of 36

Other Tracker Types

- Chapman-Kolmogorov Expected States
 - See next slide for the Chapman-Kolmogorov equation
 - Back to basics, general probability distribution functions, recursively estimates Bayesian probability density of estimated states
- Particle, Unscented Filters use Mapping
 - Multiple Markov processes using specific "noise" values
 - Use importance sampling or unscented transformations
 - Estimate states, covariances from samples of Markov process results
- Must solve the same measurements-to-track association as the Kalman filter trackers to define measurement data

11/16/2021 13 of 36

Chapman-Kolmogorov Equation

Probability Density of the State Vector

$$p(x_{k}|\mathbf{Z}_{1}^{k}) = \frac{p(z_{k}|x_{k})\int p(x_{k}|x_{k-1})\cdot p(x_{k-1}|\mathbf{Z}_{1}^{k-1})\cdot dx_{k-1}}{p(z_{k}|\mathbf{Z}_{1}^{k-1})}$$

• Each Term:

$$p\left(x_{k} \middle| \mathbf{Z}_{1}^{k}\right)$$
 The desired pdf of current states x_{k} given database \mathbf{Z}_{1}^{k} $p\left(x_{k} \middle| x_{k-1}\right)$ Provided by the state transision (object motion) model $p\left(x_{k-1} \middle| \mathbf{Z}_{1}^{k-1}\right)$ This is the result of the previous update $p\left(z_{k} \middle| x_{k}\right)$ Density function of the measurements $p\left(z_{k} \middle| \mathbf{Z}_{1}^{k-1}\right)$ Normalizes RHS pdf, independent of state vector

From AESS Distinguished Lecturer Series, October 19, 2021, by Peter Willett (U. Conn.), slide 6

Care and Feeding of Kalman Filters

- Tracker Requirements can Conflict
 - Association reliability, responsiveness, accuracy
 - Begin design with a three-tier tracker architecture to address each requirement separately
 - Combine tracker later if performance in a tier meets two requirements
- The Covariance Estimation Process
 - Lower estimated covariance gives better accuracy, but is also a trade with responsiveness
 - First priority is to avoid covariance collapse
 - Avoid process noise where it isn't needed
 - Adaptive, not-full-rank process noise can support tracking high performance objects with minimum accuracy impact

11/16/2021 15 of 36

Make the Kalman Update Statistically Efficient

The Kalman update equation

$$\vec{x}_{NEW} = \vec{x}_{EXT} + K \cdot (\vec{y} - \vec{h}(\vec{x}_{EXT}))$$

Statistically efficient when the states are linear functions of the measurements

$$\vec{h}(\vec{x}_{EXT}) = H \cdot \vec{x}_{EXT}$$

• Simple, obvious general policy:

$$H = I$$

- At the Kalman update, make the states the same as the measurements
- Aircraft trackers using ln(R/R₀) and direction cosines for aircraft position
 - Very well conditioned numerically, all quantities unitless and small in magnitude
 - Simple in formulation; isometric relation between quaternions and complex variables supports simple algebraic equations
 - Doppler measurements map well to (range rate)/(range)
- Compute object position from states in Cartesian coordinates for C2

11/16/2021 16 of 36

Tracker Architectures

- Develop Design with Three Tiers of Trackers
 - Simple one-measurement adaptive estimators of each individual measurement type
 - Separate simple EKFs for range, direction cosines, Doppler (or other local sensor outputs)
 - States are estimates of measurements and derivative(s)
 - Running estimate of process noise amplitude to adapt to object maneuvers
 - Serves to support <u>association</u>
 - Accuracy-driven main tracker
 - Kalman filter design driven by accuracy requirements
 - Uses IMM, supports MHT, supports real-time <u>tracking</u>, alerting
 - Batch estimator
 - Achieves essentially the Cramer-Rao Bound
 - Supports <u>decisions</u>
 - Advantages
 - Separates functions of association, tracking, decisions
 - Does better job of all three
- Combine Tracker Tiers Later if Performance Robustly Meets Requirements

11/16/2021 17 of 36

Covariance Estimation

- Covariance Collapse: Matrix P Becomes Nearly Singular
 - Filter loses responsiveness to tracked object motion
 - Always happens
 - When you compute $P_{NEW} = (I K \cdot H) \cdot P_{EXT}$ (causes true filter instability!)
 - When you use zero process noise in acceleration states in NCA filters, velocity states in NCV filters
 - Exhibited with "easy" tracks (high SNR, straight-line constant velocity objects)
- Steps to avoid covariance collapse
 - Use nonzero process noise in acceleration states of NCA filters, velocity states in NCV filters
 - Update covariance matrix using one of
 - Classical: Joseph Stabilized Form, $P_{NEW} = (I K \cdot H) \cdot P_{EXT} \cdot (I K \cdot H)^T + H^T \cdot R \cdot H$
 - Better: Inverse form, $P_{NEW}^{-1} = P_{EXT}^{-1} + H^{T}R^{-1}H$
 - Best: A square root filter

11/16/2021 18 of 36

Square Root Filters

- All Carry Covariance Matrix as Matrix Square Root
 - A Cholesky factorization of the covariance matrix, its inverse, or a matrix equal to a similarity transform of a Cholesky factorization
 - A Square Root filter cuts word length requirements for the covariance matrix P in half
- Best-Known Types of Square Root Filters
 - Square Root Information Filter (SRIF)
 - UDUT Filter
 - Potter square root filter
- All Square Root Filters
 - Are algebraically identical to EKF
 - Represent covariance as necessarily positive definite
 - Allow bypassing of EKF state extrapolation with better object motion models

11/16/2021 19 of 36

Minimizing Process Noise

- Use Adaptive Process Noise
 - Estimate a scale factor on the process noise covariance
 - Use squared Mahalanobis distance of error signal as a measurement of process noise magnitude of variance
- Minimize use of process noise
 - Models of motion of exoatmospheric objects usually don't need process noise
 - Use accurate motion models to characterize complex object motion (maneuver, re-entry, boost, etc.)
 - Ground objects have little vertical process noise
 - Use "smart" process noise when applicable

11/16/2021 20 of 36

Tracking High Performance Objects

- Aircraft motion uncertainties
 - Unalerted: uncertainties are mainly along velocity vector
 - Alerted and engaged: larger uncertainties mostly normal to velocity vector
 - Use IMM to model and adjust to abrupt changes in object motion
 - Use adaptive process noise to adjust to changes in object dynamics
- Boosting, Re-Entering Object Uncertainties are Mostly Along Acceleration Vector
- Use lower rank process noise, non-square G
 - Smart process noise
 - Minimizes use of process noise, does use what is required

11/16/2021 21 of 36

Example of Smart Process Noise

- Use matrix G to define aircraft coordinates front, left, up
 - Object velocity, normalized, is toward front
 - Object acceleration, normalized, is toward up
- Use process noise covariance Q to control relative magnitudes in aircraft coordinates

$$\vec{x} = \begin{bmatrix} \vec{p} \\ \vec{v} \\ \vec{a} \end{bmatrix}, \quad G = \begin{bmatrix} \vec{0} & \vec{0} & \vec{0} & \vec{0} \\ \vec{0} & \vec{0} & \vec{0} & \vec{0} \\ \vec{u}\vec{v}_{NOSE} & \vec{u}\vec{v}_{LEFT} & \vec{u}\vec{v}_{UP} \end{bmatrix}, \quad Q = \begin{bmatrix} \sigma_{NOSE}^{2} & 0 & 0 \\ 0 & \sigma_{LEFT}^{2} & 0 \\ 0 & 0 & \sigma_{UP}^{2} \end{bmatrix}$$

11/16/2021 22 of 36

Dense Environment Considerations

- When aircraft tracks interact, couple the trackers
 - Example: Aircraft moving together in a formation
 - Carry two or more objects in the same Kalman filter
 - Augment the state vector to include states for all objects tracked here
 - Augmented covariance matrix includes cross-correlations between tracks
- When return-to-track associations become ambiguous
 - Use Track Before Detect methods
 - Multiple Hypothesis Tracking (MHT) is the best right now
 - Target-oriented, Hypothesis-oriented (TO-MHT, HO-MHT)

Probabilistic MHT

11/16/2021 23 of 36

Track Before Detect

Methods

- Multiple Estimator Multiple Hypothesis Tracking (MHT)
- Interactive Multiple Models (IMM) compares results of multiple object behavior models within a single Kalman update
- Range-Doppler Map Warp/Averaging
- Others

Practical Considerations

- MHT is the "gold standard" but is an art and a science for each application
- IMM can be used alone or combined with MHT
- Some methods, like range-Doppler map averaging, don't perform detection in themselves

11/16/2021 24 of 36

Warped Range-Doppler Map

- Performs Multiple Simultaneous Estimation of Returned Signal Amplitude for Each Cell in the Range-Doppler Map
- Each Cell is a Simple NCV Kalman Filter State or Measurement
 - Estimates the target signal strength in each range-Doppler map cell
 - Warping is by interpolating each Doppler row by a delta range found as the range rate for that Doppler, multiplied by the time between range-Doppler maps $\Delta R = [dR/dt] \cdot \Delta t$
 - Update is by averaging warped previous map with current map
 - Noise and clutter average down, objects average up
- Detection is Done on the Averaged Range-Doppler Map
 - Optimal for constant range rate objects
 - Accelerating objects will have a signature that is a "trail" that can be searched for using image processing methods

11/16/2021 25 of 36

Care and Feeding of Data Fusion Methods

Why Data Fusion?

Realities of Data Fusion

Dealing With Data Fusion Issues

11/16/2021 26 of 36

Principle and Motivation for Sensor Fusion

- Given: two or more state vectors with their covariance matrices

Combining them (see Appendix)
$$P_{NEW}^{-1} = P_{1}^{-1} + P_{2}^{-1} + ... = \sum_{i} P_{i}^{-1}$$

$$\vec{x}_{NEW} = P_{NEW} \cdot (P_{1}^{-1} \cdot \vec{x}_{1} + P_{2}^{-1} \cdot \vec{x}_{2} ...) = P_{NEW} \cdot \sum_{i} P_{i}^{-1} \cdot \vec{x}_{i}$$

- Merged localization ellipsoid is wholly contained within every input localization ellipsoid
- Problem: Data From Different Sensors
 - Will have biases that almost always drift with time
 - Object Positions are usually provided in different coordinate systems
 - C2 and other sensor data may have different state vectors

11/16/2021 27 of 36

Dirty Secrets in Data Fusion

- There is no substitute for a good sensor
- Downstream processing cannot absolve the sins of upstream processing.
- The fused answer may be worse than the estimate from the best sensor.
- There are no magic algorithms.
- There will never be enough training data.
- It is difficult to quantify the value of data fusion.
- Fusion is not a static process.
- From Ligins, Hall & Llinas, pp 11-12

11/16/2021 28 of 36

Data Fusion Issues

Coordinate and Time Offsets

- Object positions, velocities from C2 will differ from local coordinates of the same objects
- Biases will drift, may be different for objects in different positions
- Systems sending data via C2 will have clock offsets, data may not be current

Methods to Deal With Offsets

- Use training data; including real data reduces surprises later
- When biases are small and variable, model them as noises
- When biases are large or drift with time, estimate them as states
- When data is old, extrapolate it to current time and fuse

Correlated Measurement Errors

- Model correlated data as a Markov process, adjust tracker configuration accordingly
- Change the system model when needed

11/16/2021 29 of 36

Summary

- Begin With Requirements
 - Stakeholder requirements
 - User requirements
 - Interoperability, ILS, environmental, and disposal requirements
- Observe limitations
 - System implementation resources
 - Facilities and personnel
 - Technology
 - Real data for development and testing
 - Schedule and Budget
- Minimize the Use of Process Noise

11/16/2021 30 of 36

Keep a Systems Engineering Perspective

- Employ Risk Management
 - Defense Acquisition University Summary: https://www.dau.edu/tools/Lists/DAUTools/Attachments/ 140/RIO-Guide-January2017.pdf
 - Problems revealed in I&T can ripple back to starting requirements
 - Have a plan for everything predictable
- Use a Statistically Efficient Kalman Update
 - Tolerating a nonlinear measurement equation increases the covariance of the updated state vector
 - The "hit" on performance accrues every update

11/16/2021 31 of 36

Use Real Data in Development

- Simulation Data Incorporates
 - What you predict will happen, exactly
 - Well-behaved noise
 - Great for early development
- Real Data Incorporates
 - What happens out there that you don't know about
 - All signals including overlapping returns and interference
 - Noise as seen by the sensor outputs, C2, etc.
 - Surprises in real data are a big plus for the developer

The world will do what it wants to do, not what you think it will do. (John Nash)

11/16/2021 32 of 36

Coordinate Systems are Critical

- Different Coordinate Systems
 - Measurements and Kalman update sensor coordinates
 - Object motion object coordinates, NED, ECIC, platform coordinates, as appropriate for accurate object motion modeling
 - C2 data Battlefield coordinates specified by BMC4I
- Hazards in Coordinate Systems
 - Use of inertial over long periods must account for Earth's rotation
 - Use of Earth-rotating NED or radar coordinates must include Coriolis in object motion models (or, better, model the object motion in Earth-rotating sensor or object coordinates)
 - For exoatmospheric objects, use ECIC coordinates
 - Coordinate origins, orientations, physical units, effective time epoch, all must agree in data hand-offs

11/16/2021 33 of 36

Realities of Statistical Estimation

- There is a Trade Between Complexity and Accuracy
 - Modeling tracked object behavior as process noise allows very simple object motion models but allows unnecessary process noise to map into tracked position errors
 - Accurate models of object behavior minimize required process noise for more robust operation
 - Less process noise produces more accurate tracks, better data-to-track association
- Adding States Reduces Accuracy
 - Information provided by sensors is bandwidth or data rate times dynamic range
 - Information in all states cannot exceed the input information
 - Adding states dilutes information available to estimate each state
- Add states Cautiously
 - When necessary to estimate drifting biases
 - Temporarily, when useful in development
 - On operator command or automatically when appropriate

11/16/2021 34 of 36

Conclusion

- A More Accurate Tracker Supports Better Association
- Use Statistically Efficient Kalman Update
- Keep Process Noise to an Absolute Minimum
- Consider All Appropriate Tracker Types
- When Object Density Impacts Tracker Performance, Look at an MHT

11/16/2021 35 of 36

Appendix and Bibliography

Appendix - Multiple Target Tracking, by James K Beard

November 16, 2021

Multiple Target Tracking: APPENDIX

Tracking and Data Fusion with a Requirements Perspective

Table of Contents	
Classic Kalman Filter Equations	
The State Vector and Covariance Extrapolation Equations	
The Measurement Equations	
The Update Equations	
The Kalman State Update as a Markov Process	
The Mahalanobis Distance and the Localization Ellipsoid	
Probability Distribution Functions	
The Innovations Sequence	
Unbiased, Minimum Variance Data Fusion Simplified	
State Vector and Covariance Matrix from Samples	
The Unweighted Case	
The Weighted case	
Matrix Inversion Lemma	
Matrix Gradients	
Bibliography	13
Reference and Tutorial	
On the Internet	14
Historical	1

11/16/2021